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Abstract

The aim of this paper is to describe a developed simulation model of the gPTP protocol
for time synchronization in OMNeT++ using the INET library. gPTP is part of the IEEE
TSN standards. Unfortunately, there is currently no simulation model of gPTP available.
Therefore, we developed a new simulation model, compared it to results from the state-of-
the-art, and would like to share it with the OMNeT++ community. The simulation model
is based on the IEEE 802.1AS specification for full-duplex Ethernet according to a given
network topology and use case scenario to analyze the results of the simulation as well as
to provide a comparison with results from the state-of-the-art. Time synchronization and
propagation delay measurements between time-aware systems are considered and results
show that the simulation model works as expected.

1 Introduction

Real-time systems are systems that meet real-time requirements in task processing. Here, tasks
must be completed within certain time intervals. Such tasks with real-time requirements are,
for example, the data transmission in industrial networks or the processing of processes in
industrial automation systems. The goal of real-time requirements is to process a task within
a defined time interval triggered by an event or a predetermined schedule. The end of a task
is also called a deadline. The tasks can occur periodically or aperiodically. In the case of
periodic tasks, the events are repeated at regular intervals; in the case of aperiodic tasks, the
event occurs irregularly and unpredictably. Real-time systems have soft and hard real-time
requirements based on deadline compliance and the resulting consequences for the system.
Missing a deadline in systems with soft real-time requirements only affects the performance,
i.e., the quality of the results, but not the functionality. For systems with hard real-time
requirements, this could have catastrophic and even safety-critical effects on the overall system.
This could, for example, damage the system, or in the worst case, a person. For tasks in real-
time networks to be able to meet their deadlines, the network nodes on which the tasks are
running must be synchronized.
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In this paper, we introduce a OMNeT++ simulation model1 of the IEEE 802.11AS gen-
eralized Precision Time Protocol (gPTP) standard for synchronization specified by the Time-
Sensitive Networking (TSN) task group [5]. TSN is an extension of standard Ethernet and
adds real-time capability. We focus on Ethernet networks as wireless networks for real-time
communication constitute a comprehensive research field of their own and wireless technologies
such as 5G may be intended to complement but not replace wired technologies [2, 15]. Actu-
ally, Ethernet-based technologies tailored to the requirements in industrial environments have
overtaken fieldbuses in terms of the number of newly installed nodes in factory automation [1].
The purpose of the simulation model proposed in this paper is to simulate the gPTP protocol
in OMNeT++ using the INET library based on the IEEE 802.1AS specification for full-duplex
Ethernet according to a given network topology and use case scenario to analyze the results
of the simulation. At its current state, the simulation model considers the time synchroniza-
tion and propagation delay measurements between time-aware systems. We want to note that
the simulation model of the gPTP protocol is completely independent from the clock model.
Therefore, we utilize only a simple clock model that assumes a constant drift in this paper.

The rest of this paper is organized as follows. Section 2 gives an overview of basics of gPTP.
Section 3 describes the implementation of the simulation model. Section 4 presents simulation
results. Related work is given in Section 5, and Section 6 concludes the paper.

2 Basics

In the case of Ethernet, gPTP uses a complete IEEE 1588-2008 profile, known as Precision
Time Protocol (PTP) [4]. However, gPTP has some features that go beyond PTP. Compared
to PTP, gPTP is much more robust against delay variations as it demands that every switch
in the network supports gPTP at the MAC layer. Consequently, only an approx. constant
propagation delay and no queuing delay can occur (c.f. [10, 11, 12]). The time synchronization
of the standard is completely based on the master-slave principle. Each port of a time-aware
system in a gPTP domain is in one of the states mentioned in the following.

• A master port is a port that sends time synchronization information to the slave port of
a time-aware system located at the other end of the physical link.

• A slave port is a port that receives time synchronization information from the master
port.

• A passive port is a port that is not gPTP capable.

• A disabled port is a port that is none of the ports mentioned above.

Furthermore, there are three different types of a time-aware system in a gPTP domain.

• The grandmaster (GM) exists only once in the domain. It initializes the clock synchroniza-
tion periodically. It has one master port connected to the domain to send synchronization
messages.

• There can be several bridges in the domain. Bridges comprise one slave port connected to
the master port of another time-aware system and possibly several master ports depending
on the network topology.

1 The simulation model can be downloaded from https://gitlab.amd.e-technik.uni-rostock.de/peter.

danielis/gptp-implementation

64

https://gitlab.amd.e-technik.uni-rostock.de/peter.danielis/gptp-implementation
https://gitlab.amd.e-technik.uni-rostock.de/peter.danielis/gptp-implementation


gPTP for OMNeT++ Puttnies, Danielis, Janchivnyambuu and Timmermann

• In the domain, multiple slaves can exist, of which each has solely one slave port.

The GM of the gPTP domain is first selected using the best master clock algorithm (BMCA)
defined in the PTP standard. However, the BMCA is out of scope in this paper as we are
more interested into the synchronization precision. Furthermore, we prefer a static setup where
we can configure which device should serve as GM. Before a time-aware system is then able
to synchronize to the GM clock, it measures the propagation delay on each of its links, see
subsection 2.1. Then time-aware systems finally exchange information to synchronize to the
GM clock. The transport mechanism of the synchronization information between time-aware
systems in described in subsection 2.2.

2.1 Propagation delay measurement

The propagation delay measurement is a media-dependent mechanism to measure the delay
between a so-called delay requester and delay responder on each link connected to the ports of
a time-aware system. If a port is gPTP capable, the delay measurement works as follows and
is depicted in Figure 1(a) (adopted from [3]).

1. The delay requester, end station 1, sends a Pdelay req message to the delay responder,
bridge 1, at its local time t1 and records t1.

2. The Pdelay req message is received by the delay responder, bridge 1, at its local time t2.
t2 is recorded at the delay responder.

3. The delay responder responds at its local time t3 by sending a Pdelay resp message. t3 is
recorded at the delay responder.

4. The delay requester receives a Pdelay resp message at its local time t4. t4 is recorded at
the delay requester.

5. Then, the delay responder sends a Pdelay resp follow up message containing the departure
time t3 of the Pdelay resp message. t3 is recorded at the delay requester.

Concerning the timestamp accuracy, note that it does not lead to inaccuracies that the simula-
tion clock does not advance while frame processing. There is no processing delay in real-world
gPTP systems, as gPTP timestamps the messages right after the start of frame delimiter
(c.f. [5]). At the end of the message exchanges, the delay requester knows all four timestamps
(t1, t2, t3, and t4) that it reads from the exchanged messages. The propagation delay is calcu-
lated using Eq. 1. The delay equals half of the difference of the intervals (t4−t1) and r ·(t3−t2).
However, the local clocks have a frequency variation defined as clock drift, which results in dif-
ferent time values between distributed time-aware systems. Thus, both intervals must be based
on a common time base and the delay responder interval (t3 − t2) needs to be corrected by
multiplying the interval by the rate ratio r of the delay requester to the delay responder clock
frequency.

Pdelay =
(t4 − t1) − r · (t3 − t2)

2
(1)

The equation above is based on the assumption that the link is symmetric since we consider
only full-duplex Ethernet links. As stated in Eq. 1, the rate ratio r is the decisive factor for the
delay measurement. In accordance with the standard, it is the ratio of the local clock frequency
of the requester to the local clock frequency of the responder to determine the relative difference
between two local clock frequencies as shown in the Eq. 2.
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Figure 1: (a) Sequence diagram of the propagation delay measurement procedure (adopted
from [3]), (b) impact of the clock drift on the arrival time of messages.

r =
frequester
fresponder

(2)

In our simulation, there is no model of the oscillator frequency. Hence, we need to approx-
imate the rate ratio r without using the Eq. 2. As illustrated in Figure 1(b), two sequential
messages arrive at the local time t21 and t22 of the slave port of end station 2. The time interval
(t22 − t21) between the arrival times of the messages is not equal to the time interval (t12 − t11)
between the departure times of the messages even if two messages are exactly of the same type
and size due to the frequency inaccuracy of the local clocks of the end stations. However, the
rate ratio r can be calculated using two intervals as shown in Eq. 3.

r =
t12 − t11
t22 − t21

(3)

The main idea of Eq. 3 is to define the rate ratio using the timestamps of two successive
sequential messages instead of the clock frequencies. Three conditions result from Eq. 3, t as
described below.

• If the rate ratio r equals one, the local clocks of two time-aware systems work at exactly
the same time.

• If it is less than one (r < 1), the clock of the end station 1 lags behind the clock of the
end station 2.

• If it is greater than one (r > 1), the clock of the end station 1 precedes the clock of the
end station 2.

The rate ratio r does however not tell about which the clock runs correctly. In our implementa-
tion, Eq. 3 has been used to calculate the rate ratio r. For more information about clock drift
estimation, we refer to [6].

2.2 Transport of time synchronization information

The time synchronization in the gPTP domain is the same as the synchronization in case of
a PTP boundary clock that uses the peer delay mechanism [5]. The time synchronization is
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Figure 2: Transport of time synchronization information.

performed using Sync and Follow up messages. End stations and bridges receive Sync and
Follow up messages on slave ports. For time-aware bridges, messages received on their slave
ports are forwarded through each master port after the synchronization information has been
corrected using propagation delay and residence time. Figure 2 shows the process over IEEE
802.3 full-duplex point-to-point links between three time-aware systems: two end stations (GM,
slave) and one bridge. End station 1 sends a synchronization (Sync) message and timestamps
the information at its master port at time te11. Bridge 1 receives the message and timestamps
it at its slave port at time tb11. After the Sync message has been sent on the master port to
bridge 1, a Follow up message is transmitted with following information at time te21.

• The preciseOriginTimestamp is the precise origin timestamp from the GM.

• The correctionField is the correction information updated by each time-aware system,
which includes the propagation delay and the residence time of the system. For instance,
in the case of the above scenario in Figure 2, bridge 1 computes a correction field as
shown in Eq. 4 when a Follow up message is sent. Then, the Follow up message conveys
the updated correction field to end station 2.

• The rateRatio is the frequency rate ratio relative to the GM clock.

correctionF ield(2) = correctionField(1) +Pdelay + residenceT ime+ transmissionT ime (4)

The information carried by Sync and Follow up is used to correct the local clock with the
GM clock in each intermediate and end system. Finally, the clocks of all time-aware systems
are synchronized to the GM clock using Eq. 5.

TimeSynced = preciseOriginT imestamp + Pdelay + correctionField(1) + transmissionT ime
(5)

The synchronized time equals the sum of the origin timestamp, propagation delay, correction
field, and the transmission time between two end points of the physical link. The transmission
time is calculated using Eq. 6. For our implementation, the propagation delay does not contain
a transmission time. That is why the transmission time is added according to Eq. 5 and 6.

transmissionT ime =
packetSize [bit]

dataRate [bps]
(6)
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3 Implementation

The main objective of the simulation model proposed in this paper is to implement core func-
tionalities of gPTP in OMNeT++ 5.2 using the INET 3.6.3 library. Therefore, we defined the
initial requirements of the project as follows.

• The INET library should be used to integrate the implemented gPTP model seamlessly
with other modules of networking standards or protocols that already exists in the INET.

• gPTP’s best master clock algorithm is not considered for the simulation model. Thus,
each port of time-aware systems has a pre-defined state as master or slave.

• Instead, we focus on the clock synchronization and propagation delay measurement.

• The implementation of a time synchronization protocol would be meaningless to simulate
the network based on the time synchronization protocol without the introduction of basic
clock drift. Thus, we have decided to integrate the basic idea of the clock with constant
drift since we did not find a ready-to-use clock model that is supported by OMNeT++
5.2 and INET 3.6.3.

3.1 Model of gPTP functionality

In order to satisfy the requirements stated above, we decided to develop a new simple module
called etherGPTP that is located between the encap and mac modules within the Ethernet-
Interface compound module of the INET library as highlighted by the red arrow in Figure 3(b).
This EthernetInterface module that is depicted in Figure 3(a) is a model of a real physical net-
work interface card. The etherGPTP module contains the main functionalities of gPTP, which
are the time synchronization and propagation delay measurement. As implemented this way,
our module can be integrated seamlessly with existing modules in the INET library. In accor-
dance to the standard, gPTP needs to be implemented at the link layer of the OSI model to
minimize the latency of the time synchronization. This was the main reason for implementing
the new module etherGPTP in EthernetInterface that is located at the link layer of the INET
library. A new compound module that includes the etherGPTP simple module is named Eth-
ernetInterfaceGPTP to differentiate it from the EthernetInterface module of the INET library.
Each etherGPTP module has one of the following types: master or slave. These types need

to be pre-defined for each port of a time-aware system before establishing the network.

• If its type is master, it sends a Sync message as requested by an upper layer module called
tableGPTP, which is discussed in more detailed in the next section, as well as it receives
a Pdelay req message.

• If the type is slave, it receives a Sync message and synchronizes the local time based on
the information carried by Sync and Follow up messages. Also, it initiates a Pdelay req
message to measure the peer delay between two end points of the physical link.

The etherGPTP module receives messages from the lower layer module mac and then checks
whether the message type is gPTP. If it is a gPTP message, the etherGPTP module processes it
based on a type of the gPTP message, Sync or Pdelay req etc. If the message type is not gPTP,
the module forwards it to the upper layer without any modification of it. Messages from upper
modules, queue or encap, are forwarded to the lower layer module mac since a gPTP message
is only received from the lower layer module mac and the upper layer module tableGPTP.
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(a) (b)

Figure 3: (a) The EthernetInterface compound module in INET, (b) the EthernetInterfaceG-
PTP compound module containing our etherGPTP module.

3.2 Model of gPTP messages

In compliance with the requirements, only time synchronization and propagation delay mea-
surement related Sync, Follow up, Pdelay req and Pdelay resp messages are implemented using
the cPacket class of the OMNeT++ API. In INET 3.6.3, the etherType of the gPTP (0x88F7)
is not known. To enable the INET library to identify the new etherType code, we would need
to modify many existing modules, which requires much effort. Due to this reason, we decided
to not implement the etherType of the gPTP. To exploit the existing possibilities of the library,
gPTP messages are encapsulated within existing EthernetIIFrame in the INET library.

3.3 Clock model

In real-world scenarios, the inaccuracies of the crystal oscillator lead to clock drift. A clock does
not run at the same speed as the reference clock due to several factors including temperature,
proecess variation, and aging. We implemented a clock with constant drift for simplicity and
each time-aware system has a distinct constant drift value. This model is not realistic as the
clock frequency changes over time in reality. However, as the clock frequency change is relatively
slow it can be assumed to be constant for relatively short simulation times.

3.4 Model of time-aware systems

In order to model time-aware systems, we use the existing EtherSwitch and EtherHost com-
pound modules of INET. To enable them to recognize gPTP messages, the EthernetInterface
module that is integrated in the EtherSwitch and EtherHost compound modules is replaced by
the EthernetInterfaceGPTP module. Generally, time-aware systems can have multiple Ether-
netInterfaceGPTP modules (network interfaces). Those modules need to communicate with
each other in order to forward a synchronization message to the master ports of the time-aware
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(a) (b)

Figure 4: (a) Model structure of a time-aware system, (b) switched Ethernet-based network.

system. In order to accomplish this intercommunication, a new simple module, called tableG-
PTP, is introduced as mentioned above. The key responsibility of this module is to provide
the intercommunication capability to the EthernetInterfaceGPTP modules that reside in the
time-aware system. The slave port of the time-aware system receives a Sync message and syn-
chronizes its local time. Afterwards the slave port requests the tableGPTP module that also
resides in the same time-aware system to inform the master ports to send forward Sync mes-
sages. Each time-aware system has only one tableGPTP module. As illustrated in Figure 4(a),
red arrows point out the newly implemented modules. Other submodules of the system are
exactly the same as EtherHost and EtherSwitch modules.

4 Simulations Results

The goal of the simulation is to make sure that the newly implemented gPTP works as we
expected and to analyze the results of the simulation against the results of a highly recog-
nized research paper [8]. The propagation delay is measured to determine the accuracy of the
algorithm and the time difference of all nodes to the GM after the synchronization.

4.1 Simulation setup

A network shown in Figure 4(b) presents the switched Ethernet-based network that consists
of a master, three bridges, and eight slaves. It is taken from the research paper [8] because
it is a realistic scenario for an in-car network. Each time-aware system’s constant clock drift
value is given as described in Table 1. A negative value expresses that the clock lags behind
the simulation time of OMNeT++ whereas a positive value expresses that the clock precedes.
The value zero means that the clock of the master node always runs at the simulation time.

Ma Br0 Br1 Br2 Sl0 Sl1 Sl2 Sl3 Sl4 Sl5 Sl6 Sl7
0 30 -15 20 -50 10 50 -5 -50 40 -15 -35

Table 1: Clock drifts of the time-aware systems in ppm. Ma: Master, br: bridge, sl: slave.
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4.2 Simulation Results

To calculate the propagation delay, Eq. 1 is applied. We set the propagation delay to 25 ms and
the expected result is that delays converge to this value with small acceptable error. Actually,
the error percentage is less than 1.8% and the absolute difference between real propagation
delay and measured delay is less than 0.5 ns which is a very good result compared with the
result of Lim et. al. [8] that accepts an error of ± 10 ns. Generally, the measured delay must be
same as the real propagation delay since we have simulated the model, but there is a factor that
causes an error for the measurement. Firstly, propagation delay measurement takes place every
one second whereas synchronization message is sent from GM every 125 ms or 62.5 ms. Due to
these different intervals, the clock drifts are different. The Sync message size is 44 bytes and
a message size of the propagation delay measurement is 54 bytes. Because of different packet
sizes, the packet transmission time is different. These time differences contribute to the error.
Eventually, after synchronization the time difference of all nodes to the GM is zero, which shows
that the gPTP simulation module works as expected.

5 Related Work

There are actually some implementations of PTP in OMNeT++. One of them is libPTP by
Wallner et. al. [14]. However, it revealed to have a lot of dependencies and does not compile
for OMNeT++ 5.2. Moverover, libPTP is only a PTP model whereas we propose a model of
gPTP. Another solution is PTP++ [7]. This implementation represents a working simulation
module, is easy to understand but is however not gPTP.

There are existing implementations of PTP (e.g., for the Linux operating system). However,
integrating real world applications into OMNeT++ does not work seamlessly according to [9].
Moreover, it is hard to find a sufficient software implementation of gPTP, as it works on the
MAC layer and is typically implemented in hardware.

Finally, to the best knowledge of the authors there is no official open-source implementation
of gPTP for the latest version of OMNeT++. CoRE4INET represents an exception [13]. Our
own tests however showed that it is quite complex and currently solely working for OMNeT++
4.x.

Consequently, we presented an open-source implementation of gPTP for OMNeT++ 5.2
that can be used for simulating any networks using gPTP.

6 Conclusion

In this paper, we have proposed an open-source gPTP simulation model containing the main
operations time synchronization and propagation delay measurements. The model uses clocks
with constant drift and end stations as well as bridges have been modelled. Our implementation
follows the gPTP standard and our simulation model works as expected. Moreover, in the scope
of the project we have presented the results of the gPTP simulation model, which is built to
analyze and verify the performance of the gPTP in the case of a switched Ethernet-based
network. Our simulation model generates results that are comparable to other research papers
such as [8]. We conclude that our model can be useful in simulating any networks using gPTP.

We concentrated on modelling the gPTP synchronization protocol and utilize only a simple
clock model that assumes a constant drift in this paper. Integrating existing clock models,
e.g. from [14], would be a reasonable extension for future work. Finally, a modification of the
simulation model using the INET 4 dispatcher functionality might be considered in order to
obtain an even more lightweight implementation of gPTP.
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