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Abstract

In this paper, we present a general strategy that enables the translation of tableau
proofs using different Skolemization rules into machine-checkable proofs. It is part of a
framework that enables (i) instantiation of the strategy into algorithms for different sets of
tableau rules (e.g., different logics) and (ii) easy soundness proof which relies on the local
extensibility of user-defined rules. Furthermore, we propose an instantiation of this strategy
for first-order tableaux that handles notably pre-inner Skolemization rules, which is, as
far as the authors know, the first one in the literature. This deskolemization strategy has
been implemented in the Goéland [17] automated theorem prover, enabling an export of its
proofs to Coq [8] and Lambdapi [2]. Finally, we have evaluated the algorithm performances
for inner and pre-inner Skolemization rules through the certification of proofs from some
categories of the TPTP [39] library.

1 Introduction
In a way, automated theorem provers (ATPs) can be seen as oracles that generate a yes/no
answer for a given formula. Although some provers attempt to provide a trace, the trustwor-
thiness of their answer often depends solely on the confidence level we have in the respective
ATP. Nevertheless, these tools are typically complex, extensive software in constant evolution,
comprising thousands of lines of code and employing sophisticated heuristics. Moreover, since
they are developed by humans, they are inherently error-prone. In such tools, bugs can be
disastrous, causing them to prove non-theorems, consequently compromising the reliability of
their answers. There are two ways to fight inconsistencies in ATPs: by fully certifying the kernel
of the prover, which is a time-consuming, arduous, and long-term work [37], or by producing
machine-checkable proofs, which is, as we show in this paper, easily accessible.

The latter relies on the notion of proof certificates. These are proofs generated by an
automated theorem prover that an external proof checker can verify. Indeed, in contrast with
ATP, proof assistants rely on a small trusted kernel, that boosts confidence in its correctness.
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Therefore, it is natural to seek a way to combine the strengths of both worlds by producing
checkable proofs, thereby instilling full confidence in the results of the ATP.

A significant strength of tableau-based tools is their ability to produce a proof from the
pristine input formula. In particular, non-clausal ground first-order tableaux implement rules
that mirror the ones of the sequent system GS3 [40], which can be easily implemented in proof
assistants. Thus, by translating this kind of tableau proofs into GS3 sequent proof trees, we
can reasonably expect them to produce machine-checkable certificates.

However, due to the use of free variables and the related Skolemization optimizations, a
free-variable tableau proof-search procedure can produce a proof slightly different from the one
obtained by the usual (ground) tableau calculus, making it not trivially translatable into a
sequent system. Indeed, most proof assistants do not accept advanced Skolemization strategies
such as those implemented in ATP, that keep correctness but greatly shorten the length of a
proof, thus improving its performance. It results in a need for translating free-variable tableau
proofs into sequent proofs.

A deskolemization strategy for tableaux has previously been proposed [14] but it is imprac-
tical as it always leads to an exponential explosion of the number of branches, and handles
Skolemization strategies only up to the quite weak inner Skolemization.

This paper aims to provide a strategy for translating tableau proofs, that use optimized
Skolemization techniques, into GS3 sequent proof trees to allow machine certification. Its con-
tribution is many-fold:

• a general strategy able to deskolemize proofs that use different Skolemization rules,

• a soundness proof for this strategy, stating that any algorithm instantiated from this
strategy using user-defined strategy rules merely needs those to satisfy local extensibility,

• an instantiation of this strategy into an algorithm for non-clausal first-order tableaux,

• an implementation and an assessment of this algorithm in the Goéland [17] theorem prover.

Related Work. Certification of ATP proofs has been explored for various techniques, such
as deskolemizing the resolution method [27]. For sequent-based systems, such frameworks have
been proposed [21, 35], but only a few focus on the certification of tableaux proofs through a
translation to GS3 [12, 14]. The former require side information and is based on connection
tableaux proofs which alter the input formula, while the latter proposes an algorithm to trans-
late on the fly first-order tableaux proofs that use inner Skolemization rules. Our approach
provides an algorithm that takes the best of these last two work: an on-the-fly translation of
tableaux proofs that deskolemizes as parsimoniously as possible. In a complementary way, [19]
has proposed a framework to verify the soundness of Skolemization rules.

2 Context and Preliminary Definitions
We work in the setting of first-order logic [41]. A signature is a tuple Σ = (ΣF ,ΣP ) consisting
of a set ΣF of function symbols and ΣP of predicate symbols, each symbol having a fixed
arity. For the purposes of Skolemization, we assume ΣF to be countable for any arity. Given
a signature Σ, we define the usual notions of Σ-terms, Σ-atoms, Σ-literals and Σ-formulas, as
well as the application of a substitution σ over a formula F or a term t, that we denote σ(F )
or σ(t). The set of free variables (i.e., variables that are not under the scope of a quantifier) for
a formula F is denoted FV(F ). Moreover, we say that t ∈ F or t ∈ t′ if there exists a position
ω such that F|ω = t or t′|ω = t.
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¬∀x. P δ¬∀¬P [x 7→ f(X1, . . . , Xn)]
∀x. P γ∀

P [x 7→ X]

Figure 1: Rules of the free-variable tableaux calculus.

Free-Variable Tableaux. The free-variable tableau [28] method is a variant of the original
ground calculus [11,33] that allows the use of free variables in place of ground terms, in order to
delay instantiation and improve the performances of ATP. Throughout the paper, we assume a
standard (refutationally complete) set of first-order inference rules categorized in α rules (unary
inferences), β rules (binary inferences), γ rules (unary rules that introduce free variables) and
δ rules (unary rules introducing Skolem symbols). We say that F is a δ-formula (respectively
γ-formula) if a δ rule (respectively γ rule) can be applied to it. If D is a δ-formula, then δD is
the term (called δ-term) generated by applying the δ rule on D. The free-variable tableau rules
are presented in Fig. 1, and illustrated by a proof in Fig. 3a.

A tableau (T, σ) for a formula F is a pair of a tree T whose nodes are decorated with sets of
formulas, and a substitution σ over the free variables of these formulas, such that either (i) T
is a single-node tree, and σ is the empty substitution, or (ii) T is obtained by application of an
inference rule on a tableau (T ′, σ′). A branch in a tableau T is said to be closed if it contains
two literals A and B such that σ(A) = σ(¬B). A tableau is closed if all its branches are closed
and thus represents a proof for F , that has to be read from top to bottom. In this paper, we
mostly consider closed tableaux, and thus we often say tableau instead of closed tableau. We
denote F � F ′ if F ′ is derived from F using a tableau rule, �+ the transitive closure of this
relation, and �∗ the reflexive closure of �+. Furthermore, given N a node of a tableau, the set
of formulas labeling N is denoted L(N). We may (purposefully) make the confusion between
“node” and “branch” as these notions are isomorphic in nondestructive tableaux. As such, for
a branch B, we write L(B) for the label of the last node of B.

Skolemization. Skolemization consists in eliminating existential quantifiers and replacing
the quantified variable with a function symbol with parameters, under specific constraints. In
first-order tableaux, Skolemization is defined by the two δ rules of Fig. 1. Among the various
Skolemization strategies presented in the literature [4, 9, 18, 28, 29, 31], we consider only outer
(δ) [28], inner (δ+) [1, 31] and pre-inner (δ++) [9] Skolemization in this paper. All these rules
impose the function symbol to be fresh. The outer Skolemization technique sets X1, . . . , Xn to
be all the free variable of the branch of F . In inner Skolemization, {X1, . . . , Xn} = FV(F ).
Finally, pre-inner Skolemization relaxes the inner Skolemization freshness condition for f , by
sharing the same unique symbol f[F ] between all δ-formulas α-equivalent to F .

GS3 Calculus. The Gentzen-Schütte calculus (GS3) [40] is the sequent system that has in-
spired tableaux. Its rules mirror those of the (ground) tableau calculus, which does not make use
of free variables. Fig. 2 presents the GS3 version of the rules that differ from those introduced
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∆,∃x. P, P [x 7→ c] `
∃

∆,∃x. P `
∆,¬∀x. P,¬P [x 7→ c] `

¬∀
∆,¬∀x. P `

∆,∀x. P, P [x 7→ t] `
∀

∆,∀x. P `
∆,¬∃x. P,¬P [x 7→ t] `

¬∃
∆,¬∃x. P `

Figure 2: Rules of the GS3 calculus that differ from the tableau calculus.

¬(∃x.D(x) ⇒ ∀yD(y))
γ¬∃

¬(D(X) ⇒ ∀yD(y))
α¬⇒

D(X),¬(∀yD(y))
δ¬∀¬D(f(X))

γ¬∃
¬(D(f(X)) ⇒ ∀yD(y))

α¬⇒
D(f(X)),¬∀yD(y)

��

(a) Outer Skolemization tableau.

¬(∃x.D(x) ⇒ ∀yD(y))
γ¬∃

¬(D(X) ⇒ ∀yD(y))
α¬⇒

D(X),¬(∀yD(y))
δ+¬∀¬D(c)

�σ{X 7→ c}

(b) Inner Skolemization tableau.

Figure 3: Proof of the drinker paradox in outer and inner Skolemization.

in Fig. 1. Contrarily to tableaux rules, these read from bottom to top. The notion of tableaux
node and branch extends readily to GS3. Moreover, the derivation relation for tableaux and for
GS3 proofs is similarly denoted by �.

Proof-Tree Manipulations. Let us define the different notions to characterize proof trees.
First, we call illegal δ-term a term that does not respect the freshness condition of the GS3
rules on existential formulas and impacts the well-formedness of the proof tree.

Definition 1 (Illegal δ-Term). Given a branch B of a GS3 proof tree, a δ-term δD is said to
be illegal iff the node where it is created already contains δD.

Definition 2 (Well-formed Proof Trees). A GS3 proof tree π is well-formed when every node of
π is an instance of the GS3 calculus and no illegal δ-term appears. A GS3 proof π is well-formed
if it is a well-formed proof tree and all leaves are axiom rules.

Definition 3 (Initial Part). Let (T, σ) be a tableau proof. (T0, σ0) is an initial part of (T, σ)
if, and only if, T0 and T share the same root and either the root is a leaf of T0, or the same
rule is applied to the common root of T0 and T , and the children of (T0, σ0) are initial parts of
the corresponding children in (T, σ).

We also define leaves and initial segments, a leaf being the last node of a branch, with its
corresponding set of formulas, and an initial segment is the analog of an initial part but for the
branches, denoted B v B′ for “B is an initial segment of B′”. Those three notions seamlessly
extend to GS3 proof trees. Now, we formally define the notion of mapping, which represents
a correspondence function between a tableau and a sequent proof tree, as well as an order
relation over these mappings. The idea is, starting from a branch in a GS3 proof tree, to find
the “equivalent branch” in the tableau and track its evolution w.r.t. this branch.
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ax
¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)), D(c),¬(∀yD(y)),¬D(c) `

¬∀(?)¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)), D(c),¬(∀yD(y)) `
¬⇒

¬(∃x (D(x) ⇒ ∀yD(y))),¬(D(c) ⇒ ∀yD(y)) `
¬∃

¬(∃x.D(x) ⇒ ∀yD(y)) `

Figure 4: Incorrect proof yielded by a naive translation in GS3 of the tableau proof of the
drinker paradox in inner skolemization.

Definition 4 (Mapping). Let (T, σ) be a tableau proof tree and π a GS3 proof tree. A mapping
µ : π → σ(T ) is a function that associates a branch B ∈ π to a branch in σ(T ) such that
L(B) ⊇ L(µ(B)).

The notion of mapping between a GS3 proof tree and a tableau can also be extended to be
between two GS3 proof trees (without the need for the substitution). Sequent–sequent mappings
will be denoted by the symbol λ, while sequent–tableau mappings will be denoted by µ. We
now specify an order over mappings, which will be used to prove that (i) the sequent proof tree
built by our strategy eventually reaches a more advanced state (ii) there is no regression while
applying it, and thus that (iii) our strategy terminates. To achieve this, we consider a multiset
ordering [23] over the mappings image without multiplicity, so that (ii) holds even in the steps
of our process that involves branch duplication.

Definition 5 (Mapping Ordering). Let µ and µ′ two mappings from sequents π and π′ to a
tableau T . We say that µ′ ≤ µ iff forall B′ ∈ π′, there exists B ∈ π such that µ(B) v µ′(B′).

Example 1. Let B, C be two incomparable branches (w.r.t. the segment extension relation
v) of a tableau T , and B1 and B2 branches of T such that B is a strict initial segment of
B1 and B2 : B @ Bi. Let us consider three mappings µ1, µ2, and µ3 with respective images
{C,C,B,B,B1, B2}, {C,C,B,B,B,B1}, and {C,B,B}. We have µ1 ≤ µ2 ≤ µ3 ≤ µ1. Note
that {B} is incomparable with {C,B1, B2}.

Need for a Translation. A proof in standard tableaux such as Fig. 3a is equivalent to a
ground tableau [28] by a mere replacement of δ-terms with fresh constants throughout the proof
tree. Therefore it can also be turned into a GS3 proof, making the translation from tableaux to
GS3 a simple one-to-one mapping. Proofs using optimized Skolemization strategies are shorter
and thus lose this trivial mapping, the crux of the problem being the translation of δ rules. For
instance, a proof using δ+ rules is developed in Fig. 3b. It is shorter than the proof of Fig. 3a,
and the naive translation attempt of Fig. 4 fails when the rule denoted (?) is applied: an illegal
δ-term appears. Changing the name of the δ-term to c′ do not solve the issue, since this breaks
the axiom rule.

3 The Deskolemization Strategy
In this section, we present a strategy that overcomes the limitations raised in the previous
section by offering an on-the-fly translation that relies on the principle of deskolemization. It is
a refinement of both [12,14], but keeps a high theoretical complexity as deskolemizing proofs is

250



A Generic Deskolemization Strategy J. Rosain et al.

non-trivial [3,5]. However, this improved version (i) generalizes well to Skolemization strategies
that fulfill weak conditions (c.f. Sec. 5) and (ii) behaves well in practice (c.f. Sec. 6).

Our idea is, given a tableau proof (T, σ), to build a GS3 proof by following the rules executed
from the root of T until reaching a δ rule that would introduce an illegal δ-term. Then, we
remove the formulas in which this term appears (by applying weakening steps), apply the now-
legal δ rule and grow back the proof tree to get the pre-removal sequent leaves back with, in
addition, the skolemized formula. To efficiently select which formulas to keep or remove, we
introduce the notions of dependent formulas (adapted from [12]) and descendant formulas.

Definition 6 (Dependency). Let N be a node of a GS3 proof tree. Let, in L(N), D be a δ-
formula and F be a γ-formula. F depends on D if and only if δD does not appear in F , F �F ′,
and δD ∈ F ′. The set of formulas which depend on D is denoted ∆(D):

∆(D) = {F ∈ L(N)γ | δD 6∈ F ∧ F � F ′ ∧ δD ∈ F ′}

This set captures all the γ-formulas that instantiate a quantified variable with δD as a
subterm. In addition, as δD does not appear in any dependent formula, ∆(D) gives a starting
point to the algorithm to subsequently select the formulas that need to be weakened once an
illegal δ-term is identified — the descendants of the dependent formulas. We call G a descendant
of a formula F if F �∗G. Moreover, if F �G in one step, G is the direct descendant of F . Note
that there may be multiple direct descendants of a single formula.

Definition 7 (Dependent Descendance). Let F and D such that F ∈ ∆(D). The set of
formulas descending from F which are also dependent on D is denoted Λ(F,D) and defined as:

Λ(F,D) =
{
G ∈ L(L) | F �+ G ∧ ∀Fi.(F �+ Fi �

∗ G) ⇒ δD ∈ Fi

}
In order to unequivocally identify the γ-formula that is the source of the dependency, Def. 7

imposes the δ-term to continuously appear in the descendance chain. In practice, this condition
is not mandatory.

We can now define our deskolemization strategy.

1. If the rule applied is not a δ rule, apply the corresponding GS3 rule (Fig. 5a).

2. Otherwise, let D be the active δ-formula. If the δ rule has already been applied on D and
its direct descendant is still on the node, then go back to Step 1. Else, for every formula
F in ∆(D), weaken the sequent to remove all formulas of Λ(F,D) and record the rules
used to derive these formulas in their application order in a list called R (Fig. 5b).

3. Apply the δ rule on D (first step of Fig. 5c).

4. Apply back the rules recorded in R, using the corresponding strategy rules (last two steps
of Fig. 5c).

5. If a leaf has not been reached, go back to Step 1.

Deskolemization algorithms are then instances of this strategy that provide a strategy rule
to specify the behavior that should be adopted during the reapplication phase of Step 4.

Definition 8 (Strategy Rule). A strategy rule is an algorithm SR(π,B, π0, λ, F, ∂) where:

• π is a GS3 proof tree during the reapplication phase (i.e., Step 4, after the weakening and
the application of a δ-rule),
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¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)), D(c),¬(∀yD(y)) ` ¬⇒
¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)) `

¬∃
¬(∃x.D(x) ⇒ ∀yD(y)) `

(a) First steps of the proof.

¬(∃x.D(x) ⇒ ∀yD(y)),¬(∀yD(y)) ` w
¬(∃x.D(x) ⇒ ∀yD(y)), D(c),¬(∀yD(y)) `

w
¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)), D(c),¬(∀yD(y)) `

¬⇒¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)) ` ¬∃¬(∃x.D(x) ⇒ ∀yD(y)) `

(b) Cleaning the relevant formulas descending from ∆(D).

ax
¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)), D(c),¬(∀yD(y)),¬D(c) `

¬⇒
¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)),¬(∀yD(y)),¬D(c) `

¬∃
¬(∃x.D(x) ⇒ ∀yD(y)),¬(∀yD(y)),¬D(c) `

¬∀
¬(∃x.D(x) ⇒ ∀yD(y)),¬(∀yD(y)) `

w
¬(∃x.D(x) ⇒ ∀yD(y)), D(c),¬(∀yD(y)) ` w

¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)), D(c),¬(∀yD(y)) ` ¬⇒¬(∃x.D(x) ⇒ ∀yD(y)),¬(D(c) ⇒ ∀yD(y)) ` ¬∃¬(∃x.D(x) ⇒ ∀yD(y)) `

(c) Skolemization, applying back R’s rules and finalisation.

Figure 5: Sound translation into GS3 of the drinker paradox in inner Skolemization.

• B is the branch of π where the reapplication is performed,

• π0 is the initial part of π where the initial segment of B is B before Step 2 and all the
others branches of π0 are in π,

• λ is a mapping from π to π0 that is minimal w.r.t. ≤,

• F is the formula in B on which the rule ∂ should be applied,

and returns a triple (π′, B′, λ′) where π′ is an extension of π where ∂ has been applied on F in
B, yielding the branch B′ and λ′ is a mapping that extends λ.

We now focus on defining a framework and, in particular, the notion of local extensibility
that will specify the necessary conditions that a strategy rule needs to fulfill in order to yield a
sound and terminating procedure.
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4 A Soundness Framework for the Strategy
The idea of the soundness proof is to build and maintain a mapping between an under-
construction GS3 proof tree and a given tableau proof. We prove that the mapping grows
throughout the application of the deskolemization strategy and terminates, leading to a well-
formed GS3 proof tree. The goal of this framework is to provide a general-purpose proof of
(i) soundness for any procedure implementing the strategy and (ii) termination, provided local
extensibility of the strategy rules introduced.

Let us start by introducing the key notion of relevant formula. These formulas are the ones
that (legally) introduce δ-terms required to close a branch — either by being directly involved
in the closure, either by being needed by a formula involved in the closure. For instance, when
δ∃(d) is applied in π2 of Fig. 6, both P (c) and Q(d) are relevant formulas, as weakening one
would lead to replay the associated δ rule and looping infinitely over the same tree.

Definition 9 (Relevant Formula). Let F, F ′ be formulas of an under-construction GS3 proof
tree π such that F is δ-formula and F � F ′ in a prior proof step S.

We say that F ′ is relevant in a node N if F ′ ∈ N and, by applying the deskolemization
strategy, S is supposed to occur at least once in the subtree rooted at N .

This definition takes place in the context of the reapplication process. We want to charac-
terize the formulas resulting from the application of a δ rule that have to be kept in the branch
and not weakened anymore. However, identifying such formulas is not trivial: for instance, in
Fig. 6, if Q(x) is replaced by Q(y, x), then the generated formula Q(c, f(c)) becomes relevant
in π1 before introducing P (c). Introducing the latter, while at the same time requiring to keep
Q(c, f(c)), results in an unplanned weakening, thus leading the strategy to fail as it will not
be able to find the formula that has introduced Q(c, f(c)). To take this into account, we show
that keeping only the exclusive formulas is sufficient to generate all the relevant formulas of a
branch. In the following definitions, we focus on formulas that have introduced a δ-term, i.e.,
on direct descendants of δ-formulas.

Definition 10 (Exclusive δ-Terms). Let δ0, δ1 be two δ-terms. δ0 excludes δ1 if δ1 /∈ δ0.

Example 2. c and d are mutually exclusive. Moreover, c excludes c and f(c). But f(c) does
not exclude c.

Definition 11 (Exclusive Formula). Let Fδ and Gδ be δ-formulas, with Fδ � F and Gδ � G.
F excludes G if δF excludes δG, i.e., if δG 6∈ δF .

Example 3. P (c) and Q(d) are (mutually) exclusive formulas. Furthermore, P (c) excludes
Q(c, f(c)). But Q(c, f(c)) does not exclude P (c).

Remark 12. The notions of non-exclusion is irrelevant between formulas coming from the
same branch in the original tableau proof. Indeed, the notion of dependency already manages
same-branch non-exclusive formulas. Thus, we will say that F does not exclude G only if F
and G do not originate from the same tableau branch.

We say that a formula F is exclusive to a node N if for all δ-formula G of N such that
G � G′ and G′ 6∈ N , F excludes G′. Moreover, we say that F is exclusive to a branch rooted
in N if it is exclusive to N and all its children. This allows us to characterize formulas that
are exclusive to the remaining unprocessed δ-formulas. This definition captures the idea of F
not being dependent of any δ-term that has to be generated in a subsequent step by a formula
currently in the node (resp. branch).
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∀x, y.(¬P (y) ∧ ∃z.P (z)) ∨ (¬Q(x) ∧ ∃z.Q(z))
γ∀(X), γ∀(Y )

(¬P (Y ) ∧ ∃z.P (z)) ∨ (¬Q(X) ∧ ∃z.Q(z))
β∨¬P (Y ) ∧ ∃z.P (z)

α∧¬P (Y ),∃z.P (z)
δ∃(c)

P (c)
�

{Y 7→ c}

¬Q(X) ∧ ∃z.Q(z)
α∧¬Q(X),∃z.Q(z)
δ∃(d)

Q(d)
�

{X 7→ d}

(a) Tableau proof

�
· · · , P (c), · · · ,¬P (c),∃z.P (z) `

α3,4
∧ · · · , P (c), · · · ,¬P (c) ∧ ∃z.P (z) ` π2

β2,3
∨ · · · , P (c), · · · , (¬P (c) ∧ ∃z.P (z)) ∨ (¬Q(d) ∧ ∃z.Q(z)) `

γ2
∀(c) · · · , P (c) `

δ∃(c) · · · ,∀y.(¬P (y) ∧ ∃z.P (z)) ∨ (¬Q(d) ∧ ∃z.Q(z)),∃z.P (z) `
w[γ1

∀(c), β
1
∨, α

1
∧]

· · · ,¬P (c),∃z.P (z) `
α1,2
∧ · · · ,¬P (c) ∧ ∃z.P (z) ` π1
β1
∨ · · · , (¬P (c) ∧ ∃z.P (z)) ∨ (¬Q(d) ∧ ∃z.Q(z)) `

γ1
∀(d), γ

1
∀(c) ∀x, y.(¬P (y) ∧ ∃z.P (z)) ∨ (¬Q(x) ∧ ∃z.Q(z)) `

(b) The GS3 proof-tree after processing δ∃(c) (and the associated closing rule)

�
· · · , P (c), · · · ,¬P (c),∃z.P (z) `

α7,8
∧ · · · , P (c), · · · ,¬P (c) ∧ ∃z.P (z) `

w[α6
∧]

· · · , P (c), · · · , Q(d), · · · ,¬P (c) ∧ ∃z.P (z) `

�
· · · , Q(d), · · · ,¬Q(d),∃z.Q(z) `

α9,10
∧ · · · , P (c), · · · , Q(d), · · · ,¬Q(d) ∧ ∃z.Q(z) `

β4,5
∨ · · · , P (c), · · · , (¬P (c) ∧ ∃z.P (z)) ∨ (¬Q(d) ∧ ∃z.Q(z)) `

γ2
∀(d), γ

3
∀(c) · · · , P (c), · · · , Q(d) `

δ∃(d) · · · , P (c), · · · ,∃z.Q(z) `
w[γ1

∀(d), γ
2
∀(c), β

3
∨, α

5
∧]

· · · , P (c), · · · ,¬Q(d),∃z.Q(z) `
α5,6
∧ · · · , P (c), · · · ,¬Q(d) ∧ ∃z.Q(z) `

w[α2
∧]

· · · ,∃z.P (z), P (c),¬Q(d) ∧ ∃z.Q(z) `

(c) The GS3 proof-tree of π2 after processing of δ∃(d) (and the associated closing rule)

Figure 6: An example with the relevant formula P (c) highlighted throughout its life cycle in
the proof tree. Q(d) is also a relevant formula in π2 (and therefore in π1).

Lemma 13. Exclusive formulas will never be weakened by the strategy.

Proof. Suppose that an exclusive formula F is weakened by the strategy. Then it means
that there exists a δ-term δ0 that triggers the reapplication mechanism. As F is weakened, it
means that δ0 ∈ F . Furthermore, δ0 ∈ δF as it was (necessarily) introduced by a γ rule. Thus,
F is not exclusive to a formula in the branch which is a contradiction of the assumption. 2

Exclusivity is a total relation: either F excludes G, or G excludes F . Indeed, if F and G
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are mutually non-exclusive, by definition δF ∈ δG and δG ∈ δF , which is impossible.

Definition 14 (Critical Node). Let N be a node of a GS3 proof tree such that a rule that
introduces an illegal δ-term δD should be applied (before Step 2). Let N ′ be the descendant of
N such that all formulas that depend on D have been weakened and where the δ rule is applied
(after Step 3). N ′ is a critical node for D.

Lemma 15 (Relevant Formulas are Exclusive). Let N be a node of a GS3 proof tree. If N is
a critical node for a formula D, then all the relevant formulas of N exclude D.

Proof. By contradiction. Assume that F is a relevant formula for N that does not exclude
D. By definition, δD ∈ δF and F ∈ ∆(D). But, as N is a critical node, all the formulas that
depend on δD have been weakened. 2

We can now refine the notion of relevant formula applied to a branch: a formula F is said
to be relevant for a branch B if it is relevant to at least one critical node of B.

Corollary 16. Given a branch B rooted in a node N of a GS3 proof tree, not weakening the
exclusive formulas of B is sufficient to generate all the the relevant formulas of B.

Proof. We prove that the set of relevant formulas of a branch B is a subset of the exclusive
formulas of B. There are two cases.

• Either B has no critical node, i.e., every δ term generated has an empty dependency set.
Then, all relevant formulas are exclusive, otherwise F is non-exclusive to some D that
introduces δD and, by definition, δD ∈ δF and at least one node becomes critical.

• or B has critical nodes, and by Lem. 15, all relevant formulas of such nodes are exclusive.

2

We have shown that generating and keeping the exclusive formulas of a branch eventually
generates all the relevant formulas of this branch. This is a key property of the method, as if
all the relevant formulas are present in a branch, all their subbranches will close trivially: if
the reapplication routine is subsequently called, no other branch can lead back to the current
branch as no δ formula that triggered this behavior will be reapplied.

We can now define the local extensibility conditions that the strategy rules need to satisfy
in order to have a sound and terminating strategy. It introduces five requirements: one about
the minimality of the mapping between the sequent proof trees yielded, one that ensures the
non-regression of this mapping, one that enforces the progression of the “focused” branch and
two that are necessary to produce a well-formed finite proof tree. The first allows us to recover
the mapping to the tableau when the routine halts. The second certifies that only B and its
extensions are actually updated in the mapping. The third prevents from stagnation by forcing
the application of a rule. The penultimate makes sure that no illegal δ-terms are introduced.
The last one ensures the overall termination of the strategy.

Definition 17 (Local Extensibility (Fig. 7)). Let SR be a strategy rule. SR is locally exten-
sible if SR(π,B, π0, λ, F, ∂) returns (π′, B′, λ′) such that:

• λ′ is minimal w.r.t. ≤,

• λ′ ≤ λ,

• λ(B) @ λ′(B′),

• π′ is well-formed whenever π is well-formed,
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T

•
•

π
•
•π′

•
•π′′

Translate
δ + weak.

λ1

λ2

ext
Weakened formulas
Grow-back formulas

δ-formula
δ-formula + weakening

•
•

•
•

Figure 7: Local extensibility of a strategy rule applied on a GS3 proof tree π mapped to a
tableau T . The growing-back phase starts by weakening and applying the δ rule on π. Then,
the weakened formulas are regenerated by reapplying missing rules, resulting in the sequent
proof tree π′′, which is mapped to T after the application of the δ rule through the intermediate
λi, mappings to π that grow with the replayed rules.

• no exclusive formula is weakened in π′.

To give an insight, the algorithm maintains a mapping between an initial part of the tableau
proof and a GS3 proof tree under construction. This tableau mapping can be locally lost during
the reapplication phase, but we need to provide constant progress when applying back the
weakened rules. We thus consider an intermediate mapping during the grow-back phase, in
which the sequent proof tree is mapped to an initial part of itself before the weakening phase.
We show that the application of the strategy rule makes the mapping decrease, i.e., makes the
current sequent proof tree being mapped to a (strictly) more advanced initial GS3 proof tree.
Hence, we show that the reapplication of the rules preserves the mapping and can only extend
it by adding new elements without removing anything or altering other branches.

A δ-term δD is said frozen [25] (a more generic definition can be found in [35, Def. 6.1]) if
all the variables of δD are free variables of the propositions where δD appears. In tableaux, all
δ-terms are obviously frozen, and it has been shown [25] that replacing frozen terms by fresh
constants keeps proofs well-formed. Hence, we consider a δ-term fD(t1, . . . , tn) to be unique. It
thus allows us to seamlessly consider the δ-term δD as either a tableau term or a GS3 constant.

With these definitions in place, we now prove that our strategy terminates and produces a
sound translation. We start by avoiding trivial non-termination by requiring a (weak) hypoth-
esis on the δ rules, that entails that a δ rule cannot depend on itself.

Lemma 18 (No Self Dependency). Let D be a δ-formula. If the term δD generated by skolem-
izing D contains all the free variables of D, then for all F ∈ ∆(D), D 6∈ Λ(F,D).

Proof. Assume that there exists F ∈ ∆(D) such that D ∈ Λ(F,D). It means that δD =
fD(t1, . . . , tn) ∈ D. This term contains the Skolem function symbol fD, that is absent from the
root of the tableau, so it has been introduced by an ancestor of D :

• by a γ rule. By definition of the δ rule, δD ∈ δD. It creates an infinite term, which cannot
happen in first-order logic.

• by a δ rule. By definition, fD needs to be at least specific to both this ancestor and
D. But they cannot be α-equivalent, so it cannot happen by assumption: the reference
tableau proof is sound.
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2

We will now focus on the notion of mapping by showing that (i) there exists a mapping (ii)
that does not regress (iii) and that strictly extends a branch by integrating a tableau rule in
the GS3 proof tree.

Lemma 19 (Mapping Progression). Let µ : π → σ(T ) a mapping. If a rule ∂ of T has to be
integrated in π on the branch B, then there exists π′, B′ ∈ π′ such that B @ B′, and a mapping
µ′ : π′ → T such that µ′ ≤ µ and µ(B) @ µ′(B′).

Proof. By case analysis. Let L be the leaf of B in π and F the formula on which ∂ should
be applied. We will identify the nodes of proof trees using their labels.

• ∂ is an α or a γ rule and let F ′ be such that F �F ′. Let L′ = L∪ {F ′}, which is the leaf
of B′ (A B) in π′. As F ′ is the only addition to µ(L) in T , the mapping µ′ : π′ → σ(T )
is defined as follows for every branch b of π′:

µ′(b) =

{
µ(B) ∪ {F ′} if b is B′

µ(b) otherwise

• ∂ is a β rule and let F1, F2 be such that F � F1, F2 on the respective branches B1, B2

with the corresponding leaves L1, L2. The mapping µ′ : π′ → σ(T ) is defined as follows
for every branch b of π′:

µ′(b) =


µ(B) ∪ {F1} if b is B1

µ(B) ∪ {F2} if b is B2

µ(b) otherwise

• ∂ is a δ rule. There are two cases. If F has no dependency, then this case is the same
as the α and γ rules. Otherwise, we generate an initial mapping λ between the proof
tree post-weakening π′′ (where (F�) F ′ is in (B @) B′ in π′′) and π that maps every
branch of π′′ that is not B′ to itself and B′ to its maximal initial segment B′′ such that
L(B′′) ⊆ L(B′). By local extensibility of the strategy rules, we apply them inductively
on the list of rules to reapply, and the last mapping yielded, λ′, (i) maps all the branches
that are not B′ to themselves or to their original (if they are a copy) and (ii) that B′ has
recovered all the formulas of B by strict extension of the branch λ′(B′) and has never
weakened F ′. Indeed, F ′ has become exclusive to B′, meaning that it cannot be weakened
by Def. 17. Furthermore, by minimality of λ′, we know that λ′(B′) = B. Thus, a mapping
to the tableau can be recovered: for every branch b of π′,

µ′(b) =

{
µ(λ′(b)) if b 6= B′ (i.e., mapped to an existing copy of itself in π)
µ(b) ∪ {F ′} otherwise

For α and γ rules, we trivially have that µ(B) @ µ′(B′) if B @ B′. Moreover, for β rules, we
have B1, B2 such that B @ B1 and B @ B2 and µ(B) @ µ′(B1) and µ(B) @ µ′(B2). For δ
rules, there are two cases. Either it has no dependency and then we enjoy the same property.
Either it has dependencies, and then there are two cases for B′′ 6= B′: either B′′ ∈ dom(µ)
and in this case, µ(B′′) = µ′(B′′), either B′′ 6∈ dom(µ) but is a copy of B0 ∈ dom(µ) and thus
µ(B′′) = µ(B0). Furthermore, µ(B) @ µ′(B′). In every case, we have a non-regression of the
mapping and a strict progression for at least one branch. 2
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We then use the last condition of the local extensibility to show that there is a finite amount
of branches that can be generated by the algorithm. The termination will then naturally follow
of the co-well-foundedness of the order @.

Lemma 20. Given a set of locally extensible strategy rules, the strategy generates a finite
amount of branches.

Proof. Suppose that there exists a branch that is generated an infinite amount of times. It
means that the under-construction GS3 proof tree has generated an infinite path (by König’s
lemma [34]). It also means that at least one relevant formula is missing in each node of this
path. However, by local extensibility of the strategy rules, all the exclusive relevant formulas
are kept while branching. In addition, by Cor. 16, we know that all the relevant formulas will
be generated in the children of this branch, thus all of its children will be closed. As we are in
a binary tree, we are finitely branching and thus there can be no infinite path on this branch
as all the children are finite. Thus this branch generates a finite amount of subbranches. As
all branches generate a finite amount of subbranches, in particular the root of the tree also
generates a finite amount of branches, thus the proof has a finite amount of branches. 2

Theorem 21 (Termination of the Deskolemization Strategy). If a set of strategy rules are
locally extensible, then the instantiation of the deskolemization strategy with those rules termi-
nates when translating a tableau (T, σ) to a GS3 proof tree π.

Proof. By Lem. 20 and well-foundedness of @−1, all tableau rules are (finitely) integrated
in a branch and the number of branches is finite. 2

Theorem 22 (Soundness). Provided local extensibility of the strategy rules, any instantiation
of the deskolemization strategy with those rules is a sound algorithm.

Proof. Let (T, σ) be a closed tableau. By Thm. 21, the deskolemization strategy yields a
GS3 proof tree and a mapping µ : π → σ(T ) (by Lem. 19). By µ and local extensibility of the
strategy rules, π is well-formed and is a proof of the formula at the root of T as all leaves of π
contain a contradiction. 2

It is important to note that this soundness framework is designed to be generic, but has one
lemma that depends on the tableaux rules, Lem. 19. As such, it is presented here for first-order
tableaux but can be extended with rules other than the usual α, β, δ and γ (for instance, when
dealing with rewriting rules) by specifying the mapping of the new rules in Lem. 19 and showing
their progression.

5 Instantiation of the Strategy for First-Order Logic
In this section, we introduce two strategy rules to reapply the rules, that regenerate the formulas
weakened during deskolemization of free-variable first-order tableaux.

Rule 1. If the rule to reapply is a unary inference rule, then reapply it as is.

Lemma 23. Rule 1 is locally extensible.

Proof (Sketch). Remark that if a δ rule should be reapplied, then the δ-term it introduces
is legal. Hence, a unary rule can be seamlessly integrated in the branch B, yielding a branch
B′, and the mapping of B′ is given by the maximum initial segment of B′ such that its labelling
formulas are fully contained in L(B′). 2
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For β rules, the strategy rule is not as trivial: it is important to be careful so as to not reapply
a rule that has already introduced a known Skolem symbol. We have already introduced all
the necessary notions to know which formulas can be safely kept or removed.

Rule 2. If the rule to reapply is a β rule, then reapply it and launch a subroutine that weakens
all the non-exclusive formulas (except the ones that are naturally present in the branch) of a
node in the non-focused branch and its (future) extensions.

Lemma 24. Rule 2 is locally extensible.

Proof (Sketch). The application of a β rule on a branch B creates two branches. There is
almost nothing to do on the focused branch and it straightforwardly leads to a strict extension
of B. On the non-focused branch B′, define π+ by taking the subtree π rooted at the first node
of the branch containing the applied β rule that is not an initial segment of B, and augment
each node of π+ by the node-exclusive formulas of L(B). π+ is then grafted on the leaf of B′.
This ensures the non-regression of the mapping. 2

Rule 1 and Rule 2 define an instantiation of the strategy with rules locally extensible. By
Thm. 22, the conjunction of the previous lemmas prove that the instantiation of the strategy
with Rule 1 and Rule 2 is a sound deskolemization algorithm for first-order tableaux.

6 Implementation and Experimental Results
To obtain machine-checkable proofs, we implement a translation process in two steps: deskolem-
ization and translation. Deskolemization transforms a tableau proof into a deskolemized GS3
proof and can be found in Goéland’s public repository1. The advantage of this step is that it
produces a sequent proof that is easily checkable by any proof assistant, as GS3 can be embed-
ded in most such tools. For instance, two embeddings of GS3 into Coq [8] and Lambdapi [7]
have been implemented in Goéland. Some similar embedding has also been implemented in
Zenon [13, 20].

Moreover, Goéland features an extension to reason efficiently within theories using deduction
modulo theory (DMT) [24]. As the prover uses this extension to reduce the proof size, we also
consider an output for proofs with rewrite rule steps.

This section shows that our algorithm has real-world value by deskolemizing state-of-the-art
proofs and that translation is affordable in practice, even though it is theoretically exponential.
As the de facto standard of automated reasoning, we have benchmarked our approach on
problems from the TPTP [39] library. The results are summarized in Table 1.

Methodology. We selected problems from two categories with FOF theorems: syntactic
problems (SYN) and naive set theory problems (SET). SYN includes problems that are made
mostly to test different properties of ATP systems [10]: passing these test problems gives good
reasons to assume the tool should behave as expected for all the other categories. SET proposes
standard reasoning over real-world problems within a theory. These problems are in general
harder and DMT usually helps [16], as the axioms of set theory are good targets for rewriting.
We ran experiments on a HPC platform with 28 cores (Intel Xeon E5-2680 v4 2.4 GHz), 128
gigabytes of RAM, and a 300s timeout. The sets of problems, together with Goéland and the
benchmark scripts, are available online2. Note that, as Goéland is a parallel theorem prover,

1https://github.com/GoelandProver/Goeland in the folder src/proof_output/gs3
2Benchmarked problems available at https://github.com/GoelandProver/GoelandBenchmarks/ in the

PROOF_CERTIFICATION folder.
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Problems
Proved

Avg.
proof
size

Avg.
size

increase

Max.
size

increase

Avg. time
deskolem-

ization (ms)

Avg. time
translation
GS3 to Coq

(ms)
Goéland 261 6.9 0 % — 72.1 15.5

Goéland+δ+ 272 7.0 8.1 % × 5.3 75.8 14.4
Goéland+δ+

+ 274 7.1 10.6 % × 10.3 134.1 39.3
Goéland
+DMT 363 6.4 0 % — 63.4 11.1

Goéland
+DMT+δ+

375 6.5 4.5 % × 3.9 72.1 12.1

Goéland
+DMT+δ+

+ 377 6.5 7.4 % × 5.2 76.1 12.1

Table 1: Comparison between the different Skolemization strategies, their proof-size increase
and the deskolemization and translation times (in ms).

its proof-search algorithm is non-deterministic and as such, results presented here may not be
perfectly reproducible. The standard version of Goéland performs outer Skolemization and is
used as a baseline for comparison with more advanced Skolemization techniques. Each variants
comes with its corresponding instantiation of the deskolemization algorithm. We evaluated the
six following variants: Goéland, Goéland+δ+, Goéland+δ+

+ , Goéland+DMT, Goéland+DMT+δ+

and Goéland+DMT+δ+
+ . Each variant corresponds to a particular option set of Goéland, where

the δ+ rules can be activated using the -inner flag, δ+
+ rules with the -preinner flag and

DMT with the -dmt flag.

Insight into the Results. Table 1 presents an overview of the results for the above bench-
mark. The result of each variant is displayed in a row, that successively contains: the number
of problems on which a tableau proof has been output by the variant ; the average size of the
tableau proof in terms of number of branches ; the average percentage and maximal ratio size
increase between the tableau and the Coq proofs, also in terms of the number of branches ;
the average translation times from tableaux to GS3 (deskolemization) and from GS3 to Coq
(embedding), both in milliseconds. All the problems proved by Goéland have been successfully
translated to Coq.

The results obtained are very promising as (i) every proof of every variant is properly certi-
fied and (ii) the average size increase between the two versions of the proof is low. In theory, a
tableau proof can be at least exponentially better than its GS3 counterpart in inner Skolemiza-
tion which in turn is exponentially better than for pre-inner Skolemization. However, we notice
that for both variants featuring these Skolemization strategies, the average and maximum in-
crease of size is low (far away from the bound), while the DMT variant is even better.

7 Conclusion
In summary, we proposed a new generic strategy to deskolemize tableaux proofs with different
Skolemization strategies by combining ideas from [14,28], implemented a soundness framework
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for this strategy, instantiated it for first-order tableaux and showed the soundness of the ap-
proach. This strategy shows promises: as far as we know, it is the first one that generalizes
properly to more optimized Skolemization strategies. As such, the authors hope that it can
become a basis for further deskolemization investigations.

In parallel, we implemented this strategy in Goéland, a tool that provides a standard
tableaux-proof output, for both δ+- and δ+

+ - rules. This enabled the translation of its proofs to
GS3. Then, we built a Coq and Lambdapi embedding of GS3: this allowed an implementation,
in Goéland, of a translation from GS3 to Coq and Lambdapi. All in all, the results obtained
are satisfactory as they validate the translation algorithm by yielding relatively short proofs.
It means that it is, in practice, affordable to certify proofs using the proposed translation
algorithm together with an embedding in a proof assistant.

With our approach validated, our next goal is to write an independent tool that understands
a language which ATP can easily output (say, TSTP [38]) and implements different deskolem-
ization strategies, both for (clausal and non-clausal) tableaux and non-tableaux provers. In
parallel, we want to develop the idea around the creation of lemmas [26,32] and see its impact
on the theoretical bound. We also aim at extending our framework, by investigating how to
instantiate the strategy in the context of deduction modulo theory or other logics.

Finally, we also want to broaden the scope of this method by providing translations to
other proof assistants, i.e., Agda [15], Isabelle/HOL [36], Lean [22], Lisa [30] or the Mizar
Project [6], potentially using existing approaches for proof translation (in particular, those
developed around Dedukti/Lambdapi).
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