
EPiC Series in Computing

Volume 57, 2018, Pages 164–180

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

A Verified Efficient Implementation of

the LLL Basis Reduction Algorithm

Ralph Bottesch, Max W. Haslbeck, and René Thiemann

University of Innsbruck, Austria

Abstract

The LLL basis reduction algorithm was the first polynomial-time algorithm to compute
a reduced basis of a given lattice, and hence also a short vector in the lattice. It thereby
approximately solves an NP-hard problem. The algorithm has several applications in
number theory, computer algebra and cryptography.

Recently, the first mechanized soundness proof of the LLL algorithm has been developed
in Isabelle/HOL. However, this proof did not include a formal statement of the algorithm’s
complexity. Furthermore, the resulting implementation was inefficient in practice.

We address both of these shortcomings in this paper. First, we prove the correctness of
a more efficient implementation of the LLL algorithm that uses only integer computations.
Second, we formally prove statements on the polynomial running-time.

1 Introduction

The LLL basis reduction algorithm, originally introduced by (and named after) Lenstra, Lenstra
and Lovász [11], is a remarkable algorithm with numerous applications. The algorithm computes
an approximate solution to the following problem:

Shortest Vector Problem (SVP): Given a linearly independent set of m vectors,
f0, . . . , fm−1 ∈ Zn, which form a basis of the corresponding lattice (the set of vectors that can
be written as linear combinations of the fi, with integer coefficients), compute a non-zero lattice
vector that has the smallest-possible norm.

This problem plays an important role in number theory and cryptography [14]. It is NP-hard
to solve exactly in general [13], but, given any basis of a lattice L as input, the LLL algorithm
computes, in polynomial time, a basis of L that is reduced w.r.t. α, which implies, among other

things, that the shortest vector in the basis is at most α
m−1

2 times larger than the shortest
non-zero vector in the lattice. Here, α > 4

3 is a parameter of the algorithm that also appears in
the running time.

In recent work, Divasón, Joosten, Thiemann, and Yamada [5] developed the first mechanized
proof of the soundness of the LLL algorithm, using Isabelle/HOL [17]. Since Isabelle code can
be exported to other programming languages and then run on actual data, their work results in
a verified implementation of the LLL algorithm. Having verified implementations of algorithms

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 164–180

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

is important not mainly because the correctness of the algorithms themselves might be in doubt,
but because such implementations can be composed into large reliable programs, of which every
part has been formally proved to work as intended.

Our first contribution is to modify the verified implementation of the LLL algorithm from [5]
so as to make it considerably faster. Although both the input and the output of instances of
SVP are sets of integer-valued vectors, the original formalization followed a particular textbook
version of the algorithm, that makes extensive use of computations on rational numbers. We
determined via tests that gcd computations, which are necessary in order to reduce fractions,
accounted for at least 83 % of the running time of that implementation on each input. In order
to improve on this, we followed [7, 18] to obtain a fully verified, integer-only implementation of
the LLL algorithm, thus eliminating the need for the use of rational numbers altogether.

The corresponding generated Haskell code now runs in time comparable to that of the LLL
implementation in some commercial software packages for mathematical computations, such as
Mathematica (see Figure 1). Specifically, in numerical experiments, our new implementation was,
at worst, about 7x slower than Mathematica; usually the two were much closer in speed. This
means that, in addition to having the advantage of being formally verified, our implementation
is now usable in practice. By contrast, on lattices of dimension n ≥ 30, the old verified
implementation is at least 3n times slower than the new one. However, it should be noted that
specialized floating-point implementations of LLL like fplll [19] are still orders of magnitude
faster than either our new implementation or the one in Mathematica.

0 20 40 60 80 100
0

500

1,000

1,500

2,000

2,500

lattice dim. and nr. of digits of coefficients

ti
m

e
in

s

old verified implementation
new verified implementation

Mathematica 11.2.0
fplll 5.2.1

Figure 1: A comparison of the performance of LLL implementations on lattices obtained from
instances of polynomial factorization. The verified implementations were run with α = 3

2 .
Mathematica and fplll used their default values for α, which are even closer to 4

3 , resulting in
slightly better approximations of shortest vectors.

Our second contribution is a formal proof of a polynomial bound on the running-time of the
rational version of the algorithm from [5] (for which only the correctness, not the complexity
bound, was formally proved), as well as the running time of the new integer version. We focus
mainly on the latter in our presentation, but in both cases, the complexity bound is proved by
first showing a polynomial bound on the number of arithmetic operations, and then showing that
throughout the entire execution of the algorithm, the computed numbers can be represented

165

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

using a number of bits that is polynomial in the size of the input. The two main Isabelle lemmas
expressing these facts are the following:

• lemma reduce basis cost expanded:

assumes Lg = nat d log (of rat (4 · α / (4 + α))) A e
and A = Max {‖v‖2 | v. v ∈ set fs}

shows cost (reduce basis cost fs) ≤ 49 · m3 · n · Lg (* illustrative bound *)

The function reduce basis cost is an extended version of reduce basis (which implements
the (integer) LLL algorithm). The extended function returns the result of the original
function, together with the number of arithmetic operations required to compute it. The
above lemma then gives a polynomial upper bound on this number of required operations,
where A is the maximum squared norm of the input vectors, and Lg is the logarithm of A
with base 4α

4+α (which is > 1 when α > 4
3). The above bound is a simplified version of the

finer bound from the code, and only serves to illustrate the fact that it is polynomial.

• lemma combined size bound integer: assumes ...

and M = Max {|fs ! i $ j| | i j. i < m ∧ j < n}
and x ∈ ... (* description of numbers during run of algorithm *)

shows log 2 |x| ≤ (6 + 6 · m) · log 2 (M · n) + m + log 2 m

The second lemma combines the size bounds for all numbers computed by the algorithm
throughout its run. Here, M is the maximum absolute value occurring in the input fs.

Together, the two lemmas imply the polynomial complexity of our implementation of the LLL
algorithm, since each arithmetic operation can be computed in polynomial time, and only
polynomially many such operations are executed.

The two contributions amount to a considerable expansion of the original project of [5],
with the code base having roughly doubled. The new proofs are available in the Archive
of Formal Proofs (AFP) for Isabelle 2018, entry LLL Basis Reduction [1]. All definitions
and lemmas found in this paper are also links which lead to an HTML version of the
corresponding Isabelle theory file. The code referenced here can be found in the follow-
ing theories: Gram Schmidt Int.thy, LLL Number Bounds.thy, LLL Integer Equations.thy,
LLL Mu Integer Impl.thy, and LLL Mu Integer Impl Complexity.thy. We provide further
installation instructions for the formalization at http://cl-informatik.uibk.ac.at/isafor/
experiments/lll. This website also contains experimental data, such as the input matrices, the
experimental setup, and the Haskell code of the old and the new verified LLL implementation.

We briefly discuss how the present work ties in with other related projects. As an example of
verified software we mention CeTA [3, 20], a tool for checking untrusted termination proofs and
complexity proofs. One of the checks performed by this software requires computations with
algebraic numbers. Although verified implementations of algebraic numbers are already available
both in Coq [2] and in Isabelle/HOL [12, 22], there is still room for improvement: since the
algebraic number computations heavily rely upon polynomial factorization, the verification of a
fast factorization algorithm would greatly improve the performance of these implementations.
A natural choice would then be van Hoeij’s algorithm [24], which is currently the fastest
deterministic polynomial factorization algorithm (it successfully factors polynomials in seconds
on examples where a verified implementation [4] does not finish even in hours). Since van Hoeij’s
algorithm uses the LLL basis reduction algorithm as a subroutine, a future verified version of it
can make full use of the efficiency of our new LLL implementation.

166

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Mu_Integer_Impl_Complexity.html#lem:reduce_basis_cost_expanded_prime
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html#lem:combined_size_bound_integer
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Integer_Equations.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Mu_Integer_Impl.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Mu_Integer_Impl_Complexity.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll
http://cl-informatik.uibk.ac.at/isafor/experiments/lll

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

The remaining sections are organized as follows: We first recall the existing formalization
in Section 2. In Section 3 we discuss the details of implementing and proving the correctness
of the integer LLL algorithm in Isabelle. We illustrate the formal proof of the bound on the
number of arithmetic operations in Section 4, and present the bounds on the size of the numbers
in Section 5. We discuss the technicalities of using Cramer’s lemma in Isabelle in Section 6.
Finally, we conclude in Section 7.

2 Preliminaries

Interactive theorem proving

Our tool of choice for the formalization of proofs is Isabelle/HOL. We assume familiarity with
it, and refer the reader to [16] for a quick introduction, but nevertheless we briefly review some
Isabelle notation, which should make most of the code segments accessible to readers familiar
only with standard mathematical notation.

All terms in Isabelle must have a well-defined type, specified with a double-colon: term :: type.
Type variables have a ′ sign before the identifier. The type of a function with domain A and
range B is specified as A⇒ B . Each of the base types nat, int and rat corresponds to the number
set suggested by its name. Access to an element of a vector, list, or array is denoted, respectively,
by $, !, !!. For example, if fs is of type int vec list, the type of lists of vectors of integers, then
fs ! i $ j denotes the j-th component of the i-th vector in the list. In the text, we will often
use more common mathematical notation instead of Isabelle notation. For example, we would
write fi rather than fs ! i . The syntax for function application in Isabelle is func arg1 arg2 ...;
terms are separated by white spaces, and func can be either the name of a function or a lambda
expression. Note that some terms that we index with subscripts in the in-text mathematical
notation are defined as functions in the Isabelle code (for example µi,j stands for mu i j).

The Formalized LLL Algorithm

In this section we briefly review the existing Isabelle/HOL formalization of the LLL algorithm [5],
focusing only on the process of formally verifying its correctness; for an explanation of the
algorithm itself, we refer to [25] or [14].

The algorithm to be formalized is given as pseudo-code in Algorithm 1. Here, bxe = bx+ 1
2c is

the integer nearest to x, the inner product of vectors u and v is denoted by u •v, and ‖u‖2 = u •u
is the squared Euclidean norm of u. The values gi and µi,j are defined as follows, with f always
referring to the current values of f in Algorithm 1:

gi = fi −
∑
j<i

µi,j · gj µi,j :=

1 if j = i

0 if j > i
fi•gj
‖gj‖2 if j < i.

The vectors g are the so-called Gram–Schmidt orthogonalization (GSO) vectors and the
recursive definitions of g and µ describe the Gram–Schmidt orthogonalization procedure. If
f0, . . . , fm−1 are a list of linearly independent vectors in Rn or Qn, then g0, . . . , gm−1 are an
orthogonal basis for the space spanned by f0, . . . , fm−1. This procedure has already been
formalized in Isabelle as a function gram schmidt in the proof of existence of the Jordan normal
forms [23].

167

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

Algorithm 1: The LLL basis reduction algorithm, verified version

Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and α > 4
3

Output: A basis for the same lattice as f0, . . . , fm−1, that is reduced w.r.t. α
1 i := 0
2 while i < m do
3 for j = i− 1, . . . , 0 do
4 fi := fi − bµi,je · fj
5 if i > 0 ∧ ‖gi−1‖2 > α · ‖gi‖2 then
6 (i, fi−1, fi) := (i− 1, fi, fi−1)

else
7 i := i+ 1

8 return f0, . . . , fm−1

The overall approach to formalizing the rest of Algorithm 1 is as follows (although we note
that the presentation here hides some refinements). First, the algorithm is encoded in several
functions (see the explanations following the code). From here onward, throughout the rest of
the paper, we present Isabelle code residing in a context that fixes the approximation factor α,
the dimensions n and m, and the basis fsinit of the initial (input) lattice.

definition basis reduction step :: (nat × int vec list) ⇒ (nat × int vec list) where

basis reduction step (i, fs) = ... (* implementation of lines 3−7 *)

partial function (tailrec) basis reduction main :: (nat × int vec list) ⇒ int vec list where

basis reduction main (i, fs) = (

if i < m

then basis reduction main (basis reduction step (i, fs))

else fs)

definition reduce basis :: int vec list ⇒ int vec list where

reduce basis fs = basis reduction main (0, fs)

Some remarks about the above code fragments:

• The body of the while-loop (lines 3–7) is modeled by the function basis reduction step, the
details of which we omit.

• The while-loop itself (line 2) is modeled as the partial function basis reduction main. Note
that the function is not necessarily terminating, since there is no restriction on the validity
of inputs (e.g. α = 0 is not ruled out). Putting these assumptions into the context might be
possible for proving properties of the LLL algorithm, but would prevent code-generation.

• Finally, the full algorithm is implemented as the function reduce basis, which starts the
loop and then returns the final integer basis f0, . . . , fm−1.

Next, in order to prove the correctness of the algorithm, an invariant is defined, which is
simply a set of conditions that the current state must satisfy throughout the entire execution
of the algorithm. In the following definition, lin indpt list is a predicate expressing linear

168

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_GSO_Impl.html#def:basis_reduction_step
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_GSO_Impl.html#def:basis_reduction_main
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_GSO_Impl.html#def:reduce_basis

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

independence. The predicate reduced k fs requires that the current g and µ values of the
first k vectors of fs are reduced w.r.t. α, i.e., that µi,j ≤ 1

2 holds for all j < i < k and that
‖gi‖2 ≤ α · ‖gi+1‖2 holds for all i < k − 1.

definition LLL invariant i fs = (

lin indpt list fs ∧
lattice of fs = lattice of fs init ∧
length fs = m ∧
reduced i fs ∧
i ≤ m)

The key correctness property of the LLL algorithm is then given by the following lemma, which
states that the invariant is preserved in the while-loop of Algorithm 1 (specifically, that if the
current state, prior to the execution of an instruction, satisfies the invariant, then so does the
resulting state after the instruction). The lemma also states that a measure indicating how far
the algorithm is from completing the computation, is decreasing – this is used to prove that the
algorithm terminates.
lemma basis reduction step:

assumes LLL invariant i fs and i < m

and basis reduction step (i, fs) = (i ′, fs ′)

shows LLL invariant i ′ fs ′

and LLL measure i ′ fs ′ < LLL measure i fs

Finally, using Lemma basis reduction step, one can prove the following crucial properties of
the LLL algorithm. Again, A is the maximum squared norm of the initial lattice basis fsinit.

1. The resulting basis is reduced and is a basis for the same lattice as the initial basis. The
first element of the reduced basis is an approximation of the shortest vector in the lattice.

lemma short vector:

assumes v = hd (reduce basis fs) and h ∈ lattice of fs − {0}
shows ‖v‖2 ≤ αm−1‖h‖2

2. The algorithm terminates, since the LLL measure is decreasing in each iteration.

3. The number of loop iterations is bounded by LLL measure i fs when invoking the algorithm
on inputs i and fs, so reduce basis requires at most LLL measure i fs many iterations.

4. LLL measure i fs ≤ m + 2 ·m ·m · log (4·α
4+α) A

These properties have all been stated and proved in [5]. There, the verified algorithm already
contains some optimizations, e.g., the g vectors are incrementally updated whenever f is changed,
instead of computing g from scratch in every iteration. Using the upper bound for the LLL
measure, one can derive a total bound of O(m3 · n · logA) arithmetic operations for the LLL
algorithm. However, this has not been done formally in [5], nor has a bound on the values of fi,
gi and µi,j been formally proved. Especially, the latter property is not at all obvious and it is
easily violated by small changes in the algorithm, cf. the last paragraphs of [5, Section 4].

169

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL.html#def:LLL_invariant
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL.html#lem:basic_basis_reduction_step
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_GSO_Impl.html#lem:short_vector

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

3 A Formally Verified Integer Implementation of the LLL
Algorithm

In this section we describe the formalization in Isabelle of a version of the LLL algorithm that
uses only integers. As mentioned in the introduction, such an implementation is desirable for
efficiency reasons.

To obtain an implementation of the LLL algorithm that uses only integer operations, we
modify the Isabelle implementation of this algorithm from [5]. This modification is necessary
because in order to perform the essential computations of the LLL algorithm, one needs to keep
track of either the µ-matrix or the GSO-vectors corresponding to the (current) set of f vectors,
neither of which contain integers in general. We therefore replace the µ-matrix by a matrix of
integers with a similar meaning.

Given a set of vectors v1, . . . , vn, entry (i, j) of the corresponding Gramian matrix is defined
to be vi • vj . In our case, the vectors vi are the fi. The Gramian determinant then, is the
determinant of the Gramian matrix.

There are multiple ways to define and characterize the Gramian matrix and determinant in
Isabelle. From here onward, all of the code we show resides in a context in which the f vectors
form a linearly independent set.

definition Gramian matrix fs k = (let M = mat k n (λ(i, j). (fs ! i) $ j) in M ·MT)

lemma assumes k < m

shows Gramian matrix fs k = mat k k (λ(i, j). fs ! i • fs ! j)

For brevity of notation, we will denote Gramian determinant fs k by dk or d k, unless we
wish to emphasize that dk is defined as a determinant. Note that Gramian determinant depends
explicitly on fs, whereas this dependency is implicit for d ; whenever a quantity depends implicitly
on fs, we assume that we are working in a context where fs is fixed.

definition d k = det (Gramian matrix fs k)

lemma Gramian determinant:

assumes k ≤ m

shows d k = (
∏

j<k. ‖gs ! j‖2)

Apart from the integer implementation, the Gramian determinant also appears when proving
the termination of the LLL algorithm (it is used to define LLL measure), as well as when proving
upper bounds on the numbers that are computed in the course of a run of the algorithm (see
Section 5).

The most important fact for the integer implementation is given by the following lemma:

lemma Gramian determinant mu ints:

assumes j ≤ i and i < m

shows d (Suc j) · µ i j ∈ Z

Based on this fact we derive a LLL implementation which only tracks the values of µ̃, where
µ̃i,j := dj+1µi,j (in the Isabelle source code, µ̃ is called dµ). We can show that the µ̃ values can
be calculated using only integer arithmetic, and that it suffices to keep track of only these values
in the LLL algorithm.

170

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:Gramian_matrix
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:Gramian_matrix_alt_alt_def
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:d
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:Gramian_determinant
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:Gramian_determinant_mu_ints

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

3.1 An Integer Implementation of Gram–Schmidt Orthogonalization

Since the LLL algorithm performs Gram–Schmidt orthogonalization as a subroutine, a full
integer-only implementation of the former also requires such an implementation of the latter. For
this, we mainly follow [7], where a GSO-algorithm using only operations in an abstract integral
domain is given. We made some small simplifications to this algorithm and then formalized in
Isabelle most of the proofs from [7].

Algorithm 2: Gram–Schmidt orthogonalization (adapted from [7]) – for µ̃-values only

Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn
Output: µ̃ where µ̃i,j = dj+1µi,j

1 for i = 0, . . . ,m− 1 do
2 µ̃i,0 := fi • f0
3 for j = 1, . . . , i do
4 σ := µ̃i,0µ̃j,0
5 for l = 1, . . . , j − 1 do
6 σ := (µ̃l,lσ + µ̃i,lµ̃j,l) div µ̃l−1,l−1
7 µ̃i,j := µ̃j−1,j−1(fi • fj)− σ
8 return µ̃

The correctness of Algorithm 2 hinges on two properties: that the calculated µ̃i,j are equal to
dj+1µi,j , and that it is correct to use integer division in line 6 of the algorithm (in other words,
that the intermediate values computed at every step of the algorithm are integers). We prove
these two statements in Isabelle by starting out with a more abstract version of the algorithm,
which we then refine to the one above. Specifically, we first define the relevant quantities

definition µ̃ i j = d (Suc i) · µ i j

fun σ where

σ 0 i j = 0

| σ (Suc l) i j = (d (Suc l) · σ l i j + µ̃ i l · µ̃ j l) / d l

where σ l i j represents the value of σ at the l-th pass through the innermost loop. Note that the
type of (the range of) µ̃ and σ is rat and not int, which is why we can use general division (for
fields) in the above function definition, rather than div . The advantage of letting µ̃ and σ have
more general types is that we can proceed to prove all of the equations and lemmas from [7]
while focusing only on underlying mathematics, without having to worry on non-exact division.
For example, from the definition above we can easily show the following characterization:

lemma σ: assumes l ≤ m

shows σ l i j = d l · (
∑

k < l. µ i k · µ j k · ‖gs ! j‖2)

which is needed to prove one of the two statements that are crucial for the correctness of the
algorithm:

lemma σ integer:

assumes l ≤ j and j ≤ i and i < m

shows σ l i j ∈ Z

171

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#def:mu_prime
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#def:sigma
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:sigma
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:sigma_integer

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

We also mention that the proof of Lemma σ integer requires an application of Cramer’s
lemma. The difficulties with applying this lemma in Isabelle are described in Section 6.

The other ingredient required to prove correctness is to show how µ̃ can be computed in
terms of σ.

lemma µ̃: assumes j ≤ i and i < m

shows µ̃ i j = d j · (fs ! i · fs ! j) − σ j i j

Having proved the desired properties of the abstract version of the algorithm, we make the
connection with an actual implementation that computes the values of µ̃ recursively. Here, the
identities dj+1 = µ̃j,j and d0 = 1 are also included; they show that the µ̃-values include the
d-values in particular.

fun σZ :: nat ⇒ nat ⇒ nat ⇒ int and µ̃Z :: nat ⇒ nat ⇒ int where

σZ 0 i j = µ̃Z i 0 · µ̃Z j 0

| σZ (Suc l) i j = (µ̃Z (Suc l) (Suc l) · σZ l i j

+ µ̃Z i (Suc l) · µ̃Z j (Suc l)) div µ̃Z l l

| µ̃Z i j = (if j = 0 then fs ! i · fs ! j

else µ̃Z (j − 1) (j − 1) · (fs ! i · fs ! j) − σZ (j − 1) i j)

Note that these functions only use integer arithmetic and therefore return a value of type
int. We then show that the new functions are equal to the ones defined previously. Here, of
int is a function that converts a number of type int into the corresponding number of type rat.
Further note that the indices of σZ are shifted by 1 with respect to the indices of σ. This is for
the sake of ease of implementation.

lemma σZ µ̃: l < j =⇒ j ≤ i =⇒ i < m =⇒ of int (σZ l i j) = σ (Suc l) i j

i < m =⇒ j ≤ i =⇒ of int (µ̃Z i j) = µ̃ i j

We then replace the repeated calls of µ̃Z by saving already computed values in an array for
fast access. Furthermore, we rewrite σZ to be a tail-recursive function, which completes the
integer implementation of the algorithm.

Note that Algorithm 2 so far only computes the µ̃-matrix. This in particular includes the di
values, since di+1 = di+1 · 1 = di+1 · µi,i = µ̃i,i and d0 = 1.

For completeness, we also formalized Algorithm 3, which computes integer-valued multiples
of the GSO-vectors. This, in turn, required us to also formally prove that all of the intermediate
values (specifically, the values of τ in each iteration) are integer vectors, so that the vector-
by-scalar division divv is exact division in each invocation. We again prove the correctness of
this algorithm by first defining an abstract version and then refining it to an optimized and
executable version.

3.2 An Integer Implementation of the LLL Algorithm

Recall that the verified implementation of Algorithm 1 in [5] stores both f and g, but recomputes
the µ-values on the fly. Alternatively, one can store the f vectors, the µ values, and the norms
of the g vectors, in which case the g vectors themselves are no longer required [11]. The
latter approach has the advantage that from this representation it is easy to switch to an
implementation that only stores f , the µ̃-matrix, and the d-values, which, by Lemma σZ µ̃,
are all integer values and integer vectors [18]. This integer representation will be the basis for

172

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:mu_prime
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#def:sigma_s
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:sigma_s

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

Algorithm 3: Gram–Schmidt orthogonalization (adapted from [7]) – g̃ vectors only

Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and µ̃
Output: g̃ where g̃i = digi

1 compute µ̃ by Algorithm 2
2 g̃0 := f0
3 for i = 1, . . . ,m− 1 do
4 τ := µ̃0,0fi − µ̃i,0f0
5 for l = 1, . . . , i do
6 τ := (µ̃l,lτ − µ̃i,lg̃l) divv µ̃l−1,l−1
7 g̃i := τ

8 return g̃

our verified integer implementation of the LLL algorithm. To prove its soundness, we proceed
similarly as for the GSO procedure: We first provide an implementation which still operates on
rational numbers and uses field-division. We then use Lemma σZ µ̃ to implement and prove
soundness of an equivalent but efficient algorithm which only operates on integers.

First, we need to extend the soundness properties of the existing verified LLL algorithm.
For instance, Lemma basis reduction step in Section 2 only speaks about the effect w.r.t. the
invariant, of executing one while-loop iteration of Algorithm 1, but it does not provide results
on how to update the µ̃-values and the d-values. To this end, we added several computation
lemmas of the following form, which precisely specify how the values of interest are updated
when performing a swap of fi and fi−1, or when performing an update fi := fi − c · fj . As
in Section 2, the newly computed values of gs, d , and µ, are marked with a ′ sign after the
identifier.

lemma basis reduction add row main: assumes...

and fs ′ = fs [i := fs ! i − c · fs ! j] (* operation on f *)

and j < i and i < m

shows...

and k < m =⇒ gs ′ k = gs k (* no change in GSO *)

and k ≤ m =⇒ d ′ k = d k (* no change in d−values *)

and i0 < m =⇒ j0 < m =⇒ µ′ i0 j0 = (* change of µ *)

(if i0 = i ∧ j0 ≤ j then µ i0 j0 − c · µ j j0 else µ i0 j0)

The computation lemma above is more versatile than just proving that the LLL-invariant
is maintained in step 3 of Algorithm 1. The precise description of the µ-values allows us to
establish the invariant easily: if c = bµi,je, then the new µi,j-value will be small afterwards and
only the µi,j0-entries with j0 ≤ j can change. Moreover, the computation lemma allows us to
implement this part of the algorithm for various representations, i.e., one obtains local updates
for f , g, µ, and d.

Whereas the above computation lemmas mainly speak about rational numbers and vectors,
we further provide similar computation lemmas for the integer values and vectors f , µ̃, and d,
in such a way that the new values can completely be calculated based on the previous integer
values of f , µ̃, and d. At this point, we also replace field divisions by integer divisions; the
corresponding soundness proofs heavily rely upon Lemma σZ µ̃. As an example, the computation
lemma for the swap operation of fk−1 and fk provides the following equality for d and a more

173

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL.html#lem:basis_reduction_add_row_main

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

complex one for the update of µ̃.1

d ′ i = (if i = k then (d (Suc k) · d (k − 1) + (µ̃ k (k − 1))2) div d k else d i)

After having proved all the updates for µ̃ and d when changing f , it remains to implement all
the other expressions in Algorithm 1 based on these integer values. For instance, the expression
‖gi−1‖2 ≤ α‖gi‖2 is shown to be equivalent to d2i · denom ≤ num · di−1 · di+1 where α is
represented by its numerator num and denominator denom. Similarly, bµi,je is implemented as
(2 · µ̃i,j + dj+1) div (2 · dj+1).

Finally, we plug everything together to obtain an executable LLL algorithm that uses solely
integer operations. It has the same structure as Algorithm 1 and therefore we are able to
prove that the integer algorithm and Algorithm 1 behave alike regarding the changes to the
f vectors, only the internal representations being different. Consequently, we just reuse the
existing soundness lemmas for Algorithm 1 like Lemma basis reduction step, in order to prove
soundness of our integer implementation of the LLL algorithm.

We end this section with a small discussion on the general principles underlying our formal-
ization. One can clearly identify an instance of a refinement approach: we conclude soundness
of the integer algorithm via the soundness of the rational number algorithm in combination with
a refinement relation (e.g., Lemma σZ µ̃) that connects both algorithms. The formulation of
computation rules might be applicable for other algorithm as well. However, we do not see how
to generalize the reasoning on why certain values during the execution of this specific algorithm
are integers.

4 A Formally Verified Bound on the Number of Arith-
metic Operations

In this section we provide details on how the Lemma reduce basis cost expanded from the
introduction was proved. The first step to be able to reason about the number of arithmetic
operations is to extend the whole algorithm by annotating and collecting costs. In our cost
model, we only count the number of arithmetic operations.

To integrate this model formally, we use the same lightweight approach as in [6]. It has the
advantage that it was very easy to integrate on top of the existing formalization.

• We use a type ′a cost = ′a × nat to represent a result of type ′a in combination with a
cost for computing the result.

• For every Isabelle function f :: ′a ⇒ ′b that is used to define the LLL algorithm, we define
a corresponding extended function f cost :: ′a ⇒ ′b cost. These extended functions use
pattern matching to access the costs of sub-algorithms, and then return a pair where all
costs are summed up.

• In order to state correctness, we define two selectors cost :: ′a cost ⇒ nat and result ::
’a cost ⇒ ’a. Then soundness of f cost is split into two properties. The first one states that
the result is correct: result (f cost x) = f x , and the second one provides a cost bound cost (f
cost x) ≤

1The updates for µ̃i,j consider five different cases depending on the relations between i, j, and k.

174

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Integer_Equations.html#lem:d_swap

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

We did not use ressource monads as in [15] – which can be used to accumulate the costs – to
model the functions f cost. The reason is that we would then always have to break the monad
abstraction in order to formally prove the cost bounds.

We illustrate our approach using two example functions: dmu array row main cost corresponds
to lines 3–7 of Algorithm 2, and basis reduction main cost is an annotated version of basis
reduction main as it is defined in Section 2.

function dmu array row main cost where

dmu array row main cost fi i dmus j = (let . . .

(σ, c1) = sigma cost . . . (* c1: cost of computing σ *)

dmu ij = djj · (fi • fs !! sj) − σ (* 2n + 2 arith. operations *)

dmus ′ = iarray update dmus i j dmu ij (* array update, no cost *)

(res, c2) = dmu array row main cost fi i dmus ′ (j + 1) (* c2: cost of recursive call *)

c3 = 2 · n + 2 (* c3: local costs of function *)

in (res, c1 + c2 + c3)) (* sum up costs *)

partial function (tailrec) basis reduction main cost where

basis reduction main cost state c = (if i < m

then let (state′, c1) = basis reduction step cost state

in basis reduction main cost state′ (c + c1)

else (state, c))

The function dmu array row main cost is the usual case: one part invokes sub-algorithms or
makes a recursive call and extracts the cost by pattern matching on pairs (c1 and c2), one does
some local operations and manually annotates the costs for them (c3), and, finally, the pair of
the computed result and the total cost is returned.

The function basis reduction main cost is a bit more interesting. All other functions can
easily be annotated without changing their input arguments. basis reduction main was defined
as a tail-recursive partial function (see [5]). In order to write basis reduction main cost as tail-
recursive we add an accumulator c to its input arguments. The proof that basis reduction main
cost is terminating is similar to the termination proof of basis reduction main. Both functions
only terminate if certain preconditions are met (LLL invariant). The proofs on both functions
also use LLL measure which measures the number of loop iterations and is bound by a polynomial
expression in m, n and the squared norm of the largest vector.

For both of these cost functions (and all other cost functions) we prove that result returns
the same value as the corresponding function, and give upper bounds for the return values of
cost. We end up with the Lemma reduce basis cost expanded mentioned in the introduction.

5 Bounds on the Numbers in the LLL Algorithm

Whereas the previous section provides a formally verified upper bound on the number of
arithmetic operations, in this section we consider the costs of each individual arithmetic
operation, and formally derive bounds on the fi, µ̃i,j , and g̃i, as well as on the auxiliary values
computed by Algorithms 2 and 3. Although the implementation of Algorithm 2 computes
neither gi nor g̃i throughout its execution, the proof of an upper bound on µ̃i,j uses an upper
bound on gi.

175

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Mu_Integer_Impl_Complexity.html#def:dmu_array_row_main_cost
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Mu_Integer_Impl_Complexity.html#def:basis_reduction_main_cost

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

Whereas the bounds for gi will be valid throughout the whole execution of the algorithm,
the bounds for the fi depend on whether we are inside or outside the for-loop in lines 3–4 of
Algorithm 1. Within the for-loop, the value of the ‖fi‖ can get slightly larger than outside the
loop.

To formally verify bounds on the numbers, we first define a stronger LLL-invariant which
includes the conditions f bound outside fs and g bound gs. Recall that A is the maximum squared
norm of the initial f vectors.

definition f bound outside k fs = (∀ i < m. ‖fs ! i‖2 ≤
(if outside ∨ k 6= i then A · m else 4m−1 · Am ·m2))

definition g bound gs = (∀ i < m. ‖gs ! i‖2 ≤ A)

definition LLL bound invariant outside (i, fs, gs) =

(LLL invariant i fs ∧ f bound outside i fs ∧ g bound gs)

Note that LLL bound invariant does not enforce a bound on the µ̃i,j , since such a bound can
be derived from the bounds on f , g, and the Gramian determinants.

lemma mu bound Gramian determinant:

assumes j < i and i < m

shows (µ i j)2 ≤ Gramian determinant fs j · ‖fs ! i‖2

The proof of this fact is rather straightforward and follows closely the one from [25, Chap-
ter 16]. The proof uses Cauchy’s inequality (‖u • v‖2 ≤ ‖u‖2 · ‖v‖2), which is part of our vector
library (the Isabelle theory file Norms.thy).

Bounds on the Gramian determinants can be directly derived from the Lemma Gramian
determinant and g bound gs:

lemma Gramian determinant bound:

assumes LLL invariant (i, fs, gs) and g bound gs and k < m

shows Gramian determinant fs k ≤ Ak

The above two lemmas clearly give an upper-bound in terms of A on µ̃i,j = dj+1µi,j =
Gramian determinant fs (Suc j) · µ i j. A bound on the g̃ vectors is obtained similarly from the
last lemma and the invariant g bound gs. Bounds in terms of A on the intermediate values of σ
and τ in Algorithms 2 and 3 are obtained in a straight-forward manner.

Finally, we note that the polynomial complexity and number bounds for Algorithm 1 were
not formalized in [5], but that such bounds do follow along the same lines as the ones shown
in this and the previous section, with one exception: When gi is a vector of rationals, an
invariant bound on the size of its absolute value does not imply a bound on the numerators
and denominators of its components. A similar comment applies to the rational µi,j values.
To obtain these bounds on numerators and denominators, we use the fact that multiplying gi
(or µi,j) by the corresponding Gramian determinant, results in an integer-valued vector (or
an integer, respectively). This immediately implies bounds on the denominators of the vector
components, which, together with the bound on the norm of the vector (given by g bound gs),
then implies a bound on the numerators as well. These proofs also require Cramer’s lemma (see
Section 6).

176

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html#def:f_bound
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL.html#def:g_bound
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html#def:LLL_bound_invariant
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:mu_bound_Gramian_determinant
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Norms.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:A_d

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

6 Applying Cramer’s Lemma in Isabelle

Cramer’s lemma (also known as Cramer’s rule) states that, given a system of linear equations
Mx = b, where M is a non-singular (n× n)-matrix, the unique solution of the system is given

by xj =
detMj

detM , where Mj is the matrix obtained from M by replacing the j-th column with
the vector b. Using Cramer’s lemma to solve a system of linear equations is, mathematically, a
simple matter, which is why the details of applying it are hand-waved in the informal proofs
in [7]. Of course, in the context of proof formalization, all of these details need to be specified.
As it turns out, there are also some Isabelle-specific technical issues with using this lemma. In
this section, we look at how these issues can be overcome, and also show how the missing details
of several proofs described in the previous sections were added in our Isabelle implementation.

Although Cramer’s lemma is already available in the Isabelle distribution, there is a technical
obstacle to deal with before we can use it in our proof.

lemma cramer lemma: fixes A :: ′aˆ ′nˆ ′n

shows det (replace col hma A (A ·v x) j) = x $ j · det A

The problem is that the lemma is available in HOL-analysis, which uses Harrison’s technique
to represent vector dimensions via type variables [8]. In contrast, the whole LLL algorithm is
formalized using a matrix- and vector-library of the AFP [21]. Here, the dimensions of a matrix M
of e.g. type ′a mat are not fixed in the type. Instead we have to add the assumption M ∈ carrier
mat n n if M is of dimensions n × n.

A recent development in Isabelle/HOL allows us to transfer theorems between the two
matrix libraries [3, Section 4]. It is based on local type definitions [10] and Isabelle’s transfer
mechanism [9]. In order to move a lemma from one matrix representation to the other, transfer
rules have to be developed for all constants within that lemma. For instance, for Cramer’s lemma
we must establish the following transfer rule between the constants replace col and replace
col hma. Here, replace col A v i is the matrix A where column i is replaced by vector v using
the AFP matrix representation, and replace col hma provides the same functionality using the
HOL-analysis matrix library.

lemma HMA M replace col [transfer rule]:

(HMA M ===> HMA V ===> HMA I ===> HMA M)

replace col replace col hma

This transfer rule states that if all three arguments of replace col and replace col hma are
related, then also the result is related. To be more precise, the first arguments of both functions
must represent the same matrix (related by HMA M), the second arguments must represent
the same vector (related by HMA V), and the third arguments must represent the same index
(related by HMA I), in order to conclude that both results represent the same matrix (related
by HMA M).

The transfer rule is easy to prove, and afterwards transfer rules for all constants in Cramer’s
lemma are available, since the existing library [3] already contains transfer rules for determinants,
matrix-vector-multiplication, etc. At this point, Cramer’s lemma can be transferred immediately.
The following Isabelle source code contains the full proof for lemma cramer lemma mat.

lemma cramer lemma mat: fixes A :: ′a mat

assumes A ∈ carrier mat n n and x ∈ carrier vec n and j < n

shows det (replace col A (A ·v x) j) = x $ j · det A

177

https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/Determinants.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:HMA_M_replace_col
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/browser_info/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:cramer_lemma_mat

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

using assms cramer lemma[untransferred, cancel card constraint]

by auto

Here, the untransferred attribute of the transfer package [9] transforms cramer lemma into
a statement which uses AFP matrices. But since this statement will contain the expression
CARD(′n) – the cardinality of the type ′n – to represent the dimension, we use cancel card
constraint in order to replace CARD(′n) by a fresh variable n in cramer lemma mat. This
replacement internally relies upon local type definitions [10], since one has to prove that for
every natural number n > 0 a suitable type ′n exists such that n = CARD(′n).

We turn to the missing proof steps involving Cramer’s lemma, and how they were formalized
in Isabelle. In the previous sections we needed formal proofs of statements like di+1gi ∈ Zn and
dj+1µi,j ∈ Z, in order to show that certain algorithms only need to store integers, as well as to
prove bounds on the sizes of numbers being computed throughout the execution of Algorithm 1.

In the case of di+1gi ∈ Zn, we first prove that gi can be written as a sum involving only
the f vectors, namely, that gi = fi −

∑
j<i λi,jfj . Although the existence of such values λi,j is

mathematically trivial,2 in Isabelle we construct these λi,j via a somewhat tedious inductive
process. Now, since the f vectors are integer-valued, it suffices to show that di+1λi,j ∈ Z, in
order to get that di+1gi ∈ Zn. To prove this, observe that each gi is orthogonal to every fl with
l < i and therefore 0 = fl • gi = fl • fi−

∑
j<i λi,j(fl • fj). So the λi,j form a solution to a system

of linear equations: f1 • f1 . . . f1 • fi−1
...

. . .
...

fi−1 • f1 . . . fi−1 • fi−1

︸ ︷︷ ︸

=M=Gramian matrix fs i

·

 λi,1
...

λi,i−1

︸ ︷︷ ︸

=L

=

 f1 • fi
...

fi−1 • fi

︸ ︷︷ ︸

=F

The coefficient matrix M on the left-hand side where Mi,j = fi • fj is exactly the Gramian
matrix of fs and i . By an application of Cramer’s lemma, we deduce:

λi,j · det (Gramian matrix fs i) = L $ j · det M

= det (replace col M (M ·v L) j)

= det (replace col M F j)

The matrix replace col M F j contains only inner products of the f vectors as entries and these
are of course integers. Then the determinant is also an integer and λi,j ·Gramian determinant fs i ∈
Z. Unfolding the definition of gi, where gi = fi −

∑
j<i λi,jfj in Gramian determinant fs i ·v gi,

leaves us with sums and differences consisting of only integers.
Since µi,j =

fi•gj
‖gj‖2 and

dj+1

dj
= ‖gj‖2, the statement dj+1µi,j ∈ Z is easily deduced from

di+1gi ∈ Zn, without a separate application of Cramer’s lemma. The lemma is used again when
proving that the σ values in Algorithm 2 (and the τ values in Algorithm 3) are integers. In the
case of the σ values, we show that dl+1(fi −

∑
j<l µi,jgj) is integer-valued (note that the sum

only goes up to l, not i), a case that is shown similarly as di+1gi ∈ Zn, except with Cramer’s
lemma applied to an l-dimensional matrix rather than an i-dimensional one.

2Since gi = fi −
∑

j<i µi,jgj , and, by the construction of the g’s, g0, . . . , gi−1 and f0, . . . , fi−1 span the

same space, the λi,j are simply the coordinates of
∑

j<i µi,jgj in the (not necessarily orthogonal) basis formed
by the first i of the f vectors.

178

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

7 Conclusion

We have extended the original formalization of the LLL basis reduction algorithm from [5],
by also formalizing a more efficient version of the algorithm, and by giving formal proofs of
the polynomial-time complexity of both the new implementation and of the old one. As the
performance of the new implementation is comparable to that of some commercial products
that implement the same algorithm, this puts our verified implementation within the realm of
practically usable software. One way to further build on this work would be to formalize a fast
polynomial factorization algorithm that uses the LLL basis reduction algorithm as a subroutine,
such as van Hoeij’s algorithm [24], which would make full use of the efficiency of our current
implementation.

Acknowledgments

We thank the anonymous reviewers for their helpful feedback. This research was supported by
the Austrian Science Fund (FWF) project Y757. The authors are listed in alphabetical order
regardless of individual contributions or seniority.

References

[1] R. Bottesch, J. Divasón, M. Haslbeck, S. Joosten, R. Thiemann, and A. Yamada. A verified
LLL algorithm. Archive of Formal Proofs, Feb. 2018. http://isa-afp.org/entries/LLL_Basis_

Reduction.html, Formal proof development.

[2] C. Cohen. Construction of real algebraic numbers in Coq. In ITP 2012, volume 7406 of LNCS,
pages 67–82, 2012.

[3] J. Divasón, S. Joosten, O. Kunčar, R. Thiemann, and A. Yamada. Efficient certification of
complexity proofs: Formalizing the Perron–Frobenius theorem (invited talk paper). In CPP 2018,
pages 2–13. ACM, 2018.

[4] J. Divasón, S. Joosten, R. Thiemann, and A. Yamada. A formalization of the Berlekamp–Zassenhaus
factorization algorithm. In CPP 2017, pages 17–29. ACM, 2017.

[5] J. Divasón, S. Joosten, R. Thiemann, and A. Yamada. A formalization of the LLL basis reduction
algorithm. In ITP 2018, volume 10895 of LNCS, pages 160–177, 2018.

[6] M. Eberl, M. W. Haslbeck, and T. Nipkow. Verified analysis of random binary tree structures. In
ITP 2018, volume 10895 of LNCS, pages 196–214, 2018.

[7] U. Erlingsson, E. Kaltofen, and D. Musser. Generic Gram–Schmidt orthogonalization by exact
division. In ISSAC 1996, pages 275–282. ACM, 1996.

[8] J. Harrison. The HOL light theory of Euclidean space. J. Autom. Reasoning, 50(2):173–190, 2013.

[9] B. Huffman and O. Kunčar. Lifting and transfer: A modular design for quotients in Isabelle/HOL.
In CPP 2013, volume 8307 of LNCS, pages 131–146, 2013.

[10] O. Kunčar and A. Popescu. From types to sets by local type definitions in higher-order logic. In
ITP 2016, volume 9807 of LNCS, pages 200–218, 2016.

[11] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982.

[12] W. Li and L. C. Paulson. A modular, efficient formalisation of real algebraic numbers. In CPP 2016,
pages 66–75. ACM, 2016.

[13] D. Micciancio. The shortest vector in a lattice is hard to approximate to within some constant.
SIAM J. Comput., 30(6):2008–2035, 2000.

179

http://isa-afp.org/entries/LLL_Basis_Reduction.html
http://isa-afp.org/entries/LLL_Basis_Reduction.html

A Verified Efficient Implementation of the LLL Algorithm Bottesch, Haslbeck and Thiemann

[14] P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm – Survey and Applications. Information
Security and Cryptography. Springer, 2010.

[15] T. Nipkow. Verified root-balanced trees. In APLAS 2017, volume 10695 of LNCS, pages 255–272,
2017.

[16] T. Nipkow and G. Klein. Concrete Semantics. Springer, 2014.

[17] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.

[18] A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical report/Department
of Computer Science, ETH Zurich, 249, 1996.

[19] The FPLLL development team. fplll, a lattice reduction library. Available at https://github.

com/fplll/fplll, 2016.

[20] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs’09,
volume 5674 of LNCS, pages 452–468, 2009.

[21] R. Thiemann and A. Yamada. Matrices, Jordan normal forms, and spectral radius theory. Archive
of Formal Proofs, Aug. 2015. http://isa-afp.org/entries/Jordan_Normal_Form.html, Formal
proof development.

[22] R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In ITP 2016, volume 9807 of
LNCS, pages 391–408, 2016.

[23] R. Thiemann and A. Yamada. Formalizing Jordan normal forms in Isabelle/HOL. In CPP 2016,
pages 88–99. ACM, 2016.

[24] M. van Hoeij. Factoring polynomials and the knapsack problem. J. Number Theory, 95:167–189,
2002.

[25] J. von zur Gathen and J. Gerhard. Modern computer algebra (3rd ed.). Cambridge University
Press, 2013.

180

https://github.com/fplll/fplll
https://github.com/fplll/fplll
http://isa-afp.org/entries/Jordan_Normal_Form.html

	Introduction
	Preliminaries
	A Formally Verified Integer Implementation of the LLL Algorithm
	An Integer Implementation of Gram–Schmidt Orthogonalization
	An Integer Implementation of the LLL Algorithm

	A Formally Verified Bound on the Number of Arithmetic Operations
	Bounds on the Numbers in the LLL Algorithm
	Applying Cramer's Lemma in Isabelle
	Conclusion

