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Abstract

We present the results of a friendly competition for formal verification of continuous
and hybrid systems with nonlinear continuous dynamics. The friendly competition took
place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2017. This year, three tools CORA, Flow* and Isabelle/HOL (in alphabetic
order) participated. They are applied to solve the reachability analysis problems on three
benchmarks which have 2, 7 and 12 variables respectively. We do not rank the tools
based on the results, but show the current status and discover the potential advantages of
different tools. Besides, the computational settings presented here provide a guide to use
the tools although they might not be optimal.

1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with linear continuous dynamics aims at providing a landscape of the cur-
rent capabilities of verification tools. We would like to stress that each tool has unique
strengths—not all of the specificities can be highlighted within a single report. To reach
a consensus in what benchmarks are used, some compromises had to be made so that
some tools may benefit more from the presented choice than others. The obtained results
have been verified by an independent repeatability evaluation. To establish further trust-
worthiness of the results, the code with which the results have been obtained is publicly
available.

In this report, we summarize the results of the first ARCH friendly competition on the
reachability analysis of nonlinear continuous systems. Given a system defined by a nonlinear
Ordinary Differential Equation (ODE) ~̇x = f(~x, t) along with an initial condition ~x ∈ X0 as well
as an unsafe set U , we apply the participating tools to prove that there is no state reachable

G. Frehse and M. Althoff (eds.), ARCH17 (EPiC Series in Computing, vol. 48), pp. 160–169



ARCH17 NLN results Chen, Althoff, Immler

contained in U over a bounded time horizon. The techniques for solving such a problem are
usually very sensitive to not only the nonlinearity of the dynamics but also the size of the
initial set. This is also one of the main reasons why most of the tools require quite a lot of
computational parameters.

In this report, three tools CORA, Flow*, and Isabelle/HOL participate in solving the safety
problems defined on three nonlinear benchmarks which are the Van der Pol oscillator, the
Laub-Loomis model, and a controlled quadrotor model. The benchmarks are selected based on
the discussions of the tool authors. Since the experimental results are produced on different
platforms, we provide Section A for the hardware details.

2 Participating Tools

CORA The tool COntinuous Reachability Analyzer (CORA) [3, 4] realizes techniques for
reachability analysis with a special focus on developing scalable solutions for verifying hybrid
systems with nonlinear continuous dynamics and/or nonlinear differential-algebraic equations.
A further focus is on considering uncertain parameters and system inputs. Due to the modular
design of CORA, much functionality can be used for other purposes that require resource-
efficient representations of multi-dimensional sets and operations on them. CORA is imple-
mented as an object-oriented MATLAB code. The modular design of CORA makes it possible
to use the capabilities of the various set representations for other purposes besides reachability
analysis. CORA is available at http://www6.in.tum.de/Main/SoftwareCORA.

Flow*. The tool Flow* [10] uses an adapted Taylor Model (TM) integration method to com-
pute reachable set overapproximations for nonlinear continuous and hybrid systems. Similar to
the original method proposed in [7], an ODE solution, i.e., a function over the initial set as well
as the time variable, over a bounded time interval is overapproximated by a TM in Flow*, and
it therefore forms an overapproximation of the reachable set there. We also call this TM a TM
flowpipe. For the discrete jumps of hybrid systems, Flow* uses the techniques of domain con-
traction and range overapproximation to compute flowpipe/guard intersections [9], and then
aggregates them by a box or parallelotope. Besides, in order to reduce the accumulation of
overestimation during an integration job, the tool can symbolically represent the remainders of
the previous N flowpipes for some N > 0 (see [11]). Flow* is available at flowstar.org.

Isabelle/HOL-ODE-Numerics. HOL-ODE-Numerics [12, 13] is a collection of rigorous nu-
merical algorithms for continuous systems. It is based on Runge-Kutta methods implemented
with affine arithmetic. The distinctive feature is that all algorithms are formally verified in
the interactive theorem prover Isabelle/HOL: everything from single roundoff errors to the
global approximation scheme is proved correct with respect to a formalization of ODEs in Is-
abelle/HOL. The resulting code is therefore highly trustworthy. It does, however, not feature
many optimizations or the most sophisticated algorithms. We therefore do not expect com-
petitive performance figures. Nevertheless, the tool should exhibit reasonable performance: it
should scale (modulo possibly large constant factors) like “regular” tools implementing similar
algorithms.
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3 Benchmarks

3.1 Van der Pol Oscillator

3.1.1 Model

The Van der Pol oscillator was introduced by the Dutch physicist Balthasar van der Pol. It can
be defined by the following ODE with 2 variables.{

ẋ = y
ẏ = y − x− x2y

The system has a stable limit cycle however shows complicated behavior.

3.1.2 Specification

We consider the initial condition x(0) ∈ [1.25, 1.55], y(0) ∈ [2.35, 2.45] which is used in [1]. The
unsafe set is given by y ≥ 2.75 for the time horizon [0, 7].

3.1.3 Results

The time costs of the participating tools on the Van der Pol oscillator benchmark are given in
Table 1, and the plots of the overapproximation sets are presented in Figure 1. We also provide
the computational settings of the tools as below.

Setting for CORA. CORA has introduced a pseudo invariant at x = 1.5. Further, CORA
uses the time step size 0.01 and the zonotope order is chosen as 20.

Setting for Flow*. Flow* uses the step size 0.02, the TM order 5, the cutoff threshold 10−6,
and the precision 53 for floating-point numbers. The TM flowpipe remainders are kept symboli-
cally every 100 steps. All floating-point roundoff errors are included in the overapproximations.
Since there are only 2 state variables, the tool plots a grid overapproximation for the flowpipes,
see Figure 1(b). The approximation quality can be better evaluated based on the remainder
size of the last TM flowpipe (see [8]). In this task, the maximum width of that remainder is
below 0.02434.

Setting for Isabelle/HOL. Maximum Zonotope order is set to 20, Reachability analysis is
carried out with an (absolute and relative) error tolerance of 2−12. A pseudo-invariant is added
at x = 1.5.

Table 1: Results of the Van der Pol Oscillator. Details of the platforms are described in
Section A.

tool computation time in [s] language machine

CORA 8 MATLAB MCORA

Flow* 2 C++ MFlow*

Isabelle/HOL 3 SML MIsabelle
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Figure 1: Reachable set overapproximations for the Van der Pol oscillator.

3.2 Laub-Loomis Benchmark

3.2.1 Model

The Laub-Loomis model is presented in [14] for studying a class of enzymatic activities. The
dynamics can be defined by the following ODE with 7 variables.

ẋ1 = 1.4x3 − 0.9x1
ẋ2 = 2.5x5 − 1.5x2
ẋ3 = 0.6x7 − 0.8x2x3
ẋ4 = 2− 1.3x3x4
ẋ5 = 0.7x1 − x4x5
ẋ6 = 0.3x1 − 3.1x6
ẋ7 = 1.8x6 − 1.5x2x7

The system is asymptotically stable and the equilibrium is the origin.
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3.2.2 Specification

The initial sets are defined according to the one used in [15]. They are boxes centered at
x1(0) = 1.2, x2(0) = 1.05, x3(0) = 1.5, x4(0) = 2.4, x5(0) = 1, x6(0) = 0.1, x7(0) = 0.45.
The width of the initial set is vital to the difficulty of the reachability analysis job. The larger
the initial set the harder the reachability analysis. In the paper, we consider the initial box of
the widths W = 0.01 and W = 0.1. For the smaller initial box, we consider the unsafe region
defined by x4 ≥ 4.5, while for the larger one, the unsafe set is defined by x4 ≥ 5. The time
horizon for both of the cases is [0, 20].

3.2.3 Results

The computation results of the tools are given in Table 2. Since the safety condition is only
related to the variable x4, we present the plots of projections of the overapproximations in the
t-x4 plane such that t is the time variable. It can be seen that enlarging the initial set size can
greatly make the reachability analysis task harder. The tool settings are given as below.

Setting for CORA. Depending on whether the smaller or larger initial sets are used, dif-
ferent algorithms in CORA are applied. For the smaller initial set, the faster but less accurate
algorithm presented in [5] is executed. For the larger initial set, the more accurate but slower
algorithm from [2] is used. CORA uses a step size of 0.1 for the small initial set and a step size
of 0.05 for the large initial set. The maximum zonotope order for both initial sets is chosen as
50.

Setting for Flow*. For the small initial set, Flow* uses the step size 0.05, the TM order 4,
the cutoff threshold 10−6 and the precision 100 for floating-point numbers. The TM flowpipe
remainders are kept symbolically every 50 steps. On the other hand, for the large initial set,
Flow* uses the same setting except that it keeps the remainders symbolically every 200 steps.
All floating-point roundoff errors are included in the overapproximations. The plots of the
flowpipes are shown in Figure 3. Notice that they are only the interval overapproximations
of the flowpipes, the exact flowpipes are much more accurate, since for the small initial set,
the maximum width of the last flowpipe remainder is only 0.02004 which is determined by the
x4-dimension, while for the large initial set, the maximum width is only 0.07634.

Setting for Isabelle/HOL. Maximum Zonotope order is set to 60 for the smaller initial set
and 100 for the larger one. Reachability analysis is carried out with an (absolute and relative)
error tolerance of 2−12 for the smaller initial set and 2−14 for the larger one.

Table 2: Results of the Laub-Loomis model. Details of the platforms are described in Section A.

computation time in [s] platform

tool W = 0.01 W = 0.1 language machine

CORA 3 63 MATLAB MCORA

Flow* 8 18 C++ MFlow*

Isabelle/HOL 90 1200 SML MIsabelle
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Figure 2: Reachable set overapproximations for the Laub-Loomis model computed by CORA.
Numerical simulations are in black.

(a) W = 0.01 (b) W = 0.1

Figure 3: Reachable set overapproximations for the Laub-Loomis model computed by Flow*.
Numerical simulations are in black.

3.3 Quadrotor Benchmark

3.3.1 Model

We study the dynamics of a quadrotor as derived in [6, eq. (16) - (19)]. Let us first introduce
the variables required to describe the model: The inertial (north) position x1, the inertial (east)
position x2, the altitude x3, the longitudinal velocity x4, the lateral velocity x5, the vertical
velocity x6, the roll angle x7, the pitch angle x8, the yaw angle x9, the roll rate x10, the pitch
rate x11, and the yaw rate x12. We further require the following parameters: gravity constant
g = 9.81 [m/s2], radius of center mass R = 0.1 [m], distance of motors to center mass l = 0.5
[m], motor mass Mrotor = 0.1 [kg], center mass M = 1 [kg], and total mass m = M + 4Mrotor.
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Figure 4: Reachable set overapproximations for the Laub-Loomis model computed by Is-
abelle/HOL.

From the above parameters we can compute the moments of inertia as

Jx =
2

5
M R2 + 2 l2Mrotor,

Jy =Jx,

Jz =
2

5
M R2 + 4 l2Mrotor.

Finally, we can write the set of ordinary differential equations for the quadrotor according
to [6, eq. (16) - (19)]:

ẋ1 = cos(x8) cos(x9)x4 +
(

sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9)
)
x5

+
(

cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9)
)
x6

ẋ2 = cos(x8) sin(x9)x4 +
(

sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9)
)
x5

+
(

cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9)
)
x6

ẋ3 = sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6
ẋ4 = x12x5 − x11x6 − g sin(x8)
ẋ5 = x10x6 − x12x4 + g cos(x8) sin(x7)
ẋ6 = x11x4 − x10x5 + g cos(x8) cos(x7)− F

m
ẋ7 = x10 + sin(x7) tan(x8)x11 + cos(x7) tan(x8)x12
ẋ8 = cos(x7)x11 − sin(x7)x12
ẋ9 = sin(x7)

cos(x8)
x11 + cos(x7)

cos(x8)
x12

ẋ10 =
Jy−Jz
Jx

x11x12 + 1
Jx
τφ

ẋ11 = Jz−Jx
Jy

x10x12 + 1
Jy
τθ

ẋ12 =
Jx−Jy
Jz

x10x11 + 1
Jz
τψ

To check interesting control specifications, we stabilize the quadrotor using simple PD con-
trollers for height, roll, and pitch. The inputs to the controller are the desired values for height,
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roll, and pitch u1, u2, and u3, respectively. The equations of the controllers are

F = mg − 10(x3 − u1) + 3x6 (height control),
τφ = −(x7 − u2)− x10 (roll control),
τθ = −(x8 − u3)− x11 (pitch control).

We leave the heading uncontrolled so that we set τψ = 0.

3.3.2 Specification

The task is to change the height from 0 [m] to 1 [m] within 5 [s]. A goal region [0.98, 1.02] of the
height x3 has to be reached within 5 [s] and the height has to stay below 1.4 for all times. After
1 [s] the height should stay above 0.9 [m]. The initial position of the quadrotor is uncertain in
all directions within [−0.4, 0.4] [m] and also the velocity is uncertain within [−0.4, 0.4] [m/s] for
all directions. All other values are initialized as 0.

3.3.3 Results

The results of the reachability computation for the quadrotor model are given in Figure 5 and
Table 3. We give the settings for CORA and Flow* as below.

Setting for CORA. CORA uses the step size 0.1 and the zonotope order 50. The computa-
tion is carried out using the approach in [5], which conservatively linearizes the system dynamics
for each consecutive time interval by adding the linearization error as an uncertain input. The
linearization error is obtained using the Lagrange remainder, which are evaluated via interval
arithmetic. This results in many function calls (especially for this example), whose overhead
has been reduced since MATLAB R2015b. So the execution time for the quadrotor benchmark
depends significantly on the MATLAB version (more than twice as fast since R2015b).

Setting for Flow*. Flow* uses the step size 0.01, the TM order 4, the cutoff threshold 10−6

and the precision 100 for floating-point numbers. The TM flowpipe remainders are kept symbol-
ically every 20 steps. All floating-point roundoff errors are included in the overapproximation.
Figure 5(b) illustrates the interval overapproixmations for the flowpipes. To better evaluate the
approximation error, we provide the maximum remainder width of the last flowpipe and that
is only 0.00128.

Table 3: Results of the quadrotor model. Details of the platforms are described in Section A.

tool computation time in [s] language machine

CORA 11 MATLAB MCORA

Flow* 12 C++ MFlow*

Isabelle/HOL - SML MIsabelle

4 Conclusion and Outlook

From the results of the competition on nonlinear systems, we can see that the techniques
handling nonlinear dynamics often require more user-specified parameters than those for linear
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Figure 5: Reachable set overapproximations for the quadrotor model.

dynamics. all of the tools have their advantages on some examples, and the applicability of a
tool to one example is usually quite sensitive to the computational setting in use. Therefore, it
could be a promising direction for coming up with new techniques to find proper settings for a
tool and optimize its performance for a given computation task.

In the next year, we hope that more tools could join the friendly competition and we will
also collect more benchmarks which are not only continuous but also hybrid. We will also try
to expose the advantages of different tools by examples. The reports of other categories can be
found in the proceedings and on the ARCH website: cps-vo.org/group/ARCH.
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A Specification of Used Machines

A.1 MCORA

• Processor: Intel Core i7-3520M CPU @ 2.90GHz x 4

• Memory: 7.6 GB

• Average CPU Mark on www.cpubenchmark.net: 4515 (full), 1785 (single thread)

A.2 MFlow*

Virtual machine on VMware Workstation 11 with a single core CPU and 4.0 GB memory. The
operating systems is Ubuntu 16.04 LTS. The physical CPU is given as below.

• Processor: Intel Xeon E3-1245 V3 @ 3.4GHz x 4

• Average CPU Mark on www.cpubenchmark.net: 9545 (full), 2155 (single thread)
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A.3 MIsabelle

• Processor: Intel Core i7-4960HQ CPU @ 2.60GHz x 4

• Memory: 16 GB 1600 MHz DDR3

• Average CPU Mark on www.cpubenchmark.net: 9770 (full), 2169 (single thread)
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[10] X. Chen, E. Ábrahám, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In Proc. of CAV’13, volume 8044 of LNCS, pages 258–263. Springer, 2013.

[11] X. Chen and S. Sankaranarayanan. Decomposed reachability analysis for nonlinear systems. In
Proc. of RTSS’16, pages 13–24. IEEE Computer Society, 2016.

[12] F. Immler. Verified reachability analysis of continuous systems. In Proc. of TACAS’15, volume
9035 of LNCS, pages 37–51. Springer, 2015.

[13] F. Immler and J. Hlzl. Ordinary differential equations. Archive of Formal Proofs, April 2012. http:
//isa-afp.org/entries/Ordinary_Differential_Equations.shtml, Formal proof development.

[14] M. T. Laub and W. F. Loomis. A molecular network that produces spontaneous oscillations in
excitable cells of dictyostelium. Molecular Biology of the Cell, 9:3521–3532, 1998.

[15] R. Testylier and T. Dang. Nltoolbox: A library for reachability computation of nonlinear dynamical
systems. In Proc. of ATVA’13, volume 8172 of LNCS, pages 469–473. Springer, 2013.

169

www.cpubenchmark.net
http://isa-afp.org/entries/Ordinary_Differential_Equations.shtml
http://isa-afp.org/entries/Ordinary_Differential_Equations.shtml

	Introduction
	Participating Tools
	Benchmarks
	Van der Pol Oscillator
	Model
	Specification
	Results

	Laub-Loomis Benchmark
	Model
	Specification
	Results

	Quadrotor Benchmark
	Model
	Specification
	Results


	Conclusion and Outlook
	Acknowledgments
	Specification of Used Machines
	MCORA
	MFlow*
	MIsabelle


