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Abstract

This report presents the results of the repeatability evaluation for the 3rd Interna-
tional Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP’19). The
competition took place as part of the workshop Applied Verification for Continuous and
Hybrid Systems (ARCH) in 2019, affiliated with the Cyber-Physical Systems and Internet
of Things (CPS-IoT Week’19). In its third edition, twenty-five tools submitted artifacts
through a Git repository for the repeatability evaluation, applied to solve benchmark prob-
lems for eight competition categories. The majority of participants adhered to new require-
ments for this year’s repeatability evaluation, namely to submit scripts to automatically
install and execute tools in containerized virtual environments (specifically Dockerfiles to
execute within Docker). The repeatability results represent a snapshot of the current land-
scape of tools and the types of benchmarks for which they are particularly suited and for
which others may repeat their analyses. Due to the diversity of problems in verification
of continuous and hybrid systems, as well as basing on standard practice in repeatability
evaluations, we evaluate the tools with pass and/or failing being repeatable.

1 Introduction

The presented repeatability evaluation for verification of continuous and hybrid systems sum-
mary for the ARCH friendly competition aims at providing an overview of the usability and
reproducibility of results for the current capabilities of verification tools. The verification com-
munity has a rich history of publishing strong papers emphasizing computational contributions,
but subsequent re-creation of these computational elements is often challenging because details
of the implementation are unavoidably absent in the paper due to space restrictions. To ad-
dress this challenge, some authors post code and data to their websites, but there is often only
marginal formal incentive to do so, and typically there is no easy way to determine whether
others can actually use or extend the results. Owing to such factors, computational results
often become non-reproducible, sometimes even by the research group which originally pro-
duced them. The goal of this repeatability evaluation process is to improve the reproducibility
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of computational results for the tools competing on the selected benchmarks evaluated in the
competition. More broadly, a key goal of the competition itself is to improve repeatability
and interoperability of these software tools, to help develop more standard benchmarks for
evaluating tools and easing comparisons of these tools and their analyses.

This report summarizes the repeatability evaluation (RE) results obtained in the 2019
friendly competition of the ARCH workshop1. The obtained results in the competition have
been verified by an independent repeatability evaluation conducted by the author of this report.
To establish further trustworthiness of the results, the artifacts, code, documentation, bench-
marks, etc. with which the repeatability results have been obtained are publicly available on
the ARCH website (https://cps-vo.org/group/ARCH) and a Git version control repository
(https://gitlab.com/goranf/ARCH-COMP).

The repeatability evaluation of the competition featured eight categories and 21 software
tools, where several tools participated in multiple categories but have been counted distinctly
for their participation in each category. The categories of problems in which tools participated
in the repeatability evaluation are:

• AFF: affine and piecewise affine dynamics (4 tools),

• AINNCS: artificial intelligence and neural network control systems (2 tools),

• FALS: falsification (1 tool),

• HBMC: bounded model checking (1 tools),

• HPWC: piecewise constant dynamics (3 tools),

• HSTP: hybrid systems theorem proving (2 tools),

• NLN: nonlinear dynamics (4 tools), and

• SM: stochastic models (4 tools).

The tools evaluated, broken into their competition categories are:

• AFF

– CORA: Nikolas Kochdumper and Matthias Althoff [1],

– HyLAA: and continuous-time HyLAA (HyLAAC): Stanley Bak [3],

– SpaceEx: Goran Frehse [11], and

– JuliaReach: Marcelo Forets [8].

• AINNCS

– nnv: Hoang-Dung Tran, Diego Manzanas-Lopez, Patrick Musau, Weiming Xiang,
and Taylor T. Johnson [21, 20], and

– Verisig: Taylor Carpenter and Radoslav Ivanov [14].

• FALS

– FalStar: Gidon Ernst, Zhenya Zhang, Paolo Arcaini, and Yoriyuki Yamagata [22].

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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• HBMC

– Bach: Lei Bu [9].

• HPWC

– Bach: Lei Bu [9]

– PHAVer-lite: Enea Zaffanella, and

– SpaceEx (and the PHAVer scenario): Goran Frehse [11].

• HSTP

– KeYmaera 3: Stefan Mitsch and Andre Platzer [17], and

– KeYmaera X: Stefan Mitsch, Andre Platzer, Andrew Sogokon, and Yong Kiam
Tan [12].

• NLN

– Ariadne: Luca Geretti and Pieter Collins [4, 5],

– CORA: Niklas Kochdumper and Matthias Althoff [1],

– Isabelle/HOL: Fabian Immler [13, 15], and

– JuliaReach: Marcelo Forets and Christian Schilling [7].

• SM (repeatability provided by Nathalie Cauchi)

– HYPEG: Carina Pilch and Anne Remke [16],

– LyapMMC: Mahmoud Salamati and Sadegh Soudjani [18],

– SCDPN: Henk Blum and Hao Ma [6], and

– StocHy: Nathalie Cauchi and Alessandro Abate [10].

Several tools that participated in the competition did not participate in the repeatability
evaluation, so only those that participated are listed. In future iterations, we encourage all par-
ticipants of the competition to complete the repeatability evaluation to make it easier for others
in the research community to build on these results, and are considering requiring repeatability
participation in the future.

2 Repeatability Evaluation Plan, Execution, and Results

The repeatability evaluation was conducted following the presentations of the competition re-
sults at the ARCH’19 workshop. The basic mechanism followed in the repeatability evaluation
was similar to that done in related conferences, such as the Hybrid Systems: Computation
Control conference series, which has featured a repeatability evaluation in the past several iter-
ations, including this year (http://hscc2019.eecs.umich.edu/html/re.html). Three basic criteria
are generally evaluated: coverage, instructions, and quality, each of which may be rated on a
scale of one through five, where one indicates a missing component or significantly below ac-
ceptability, and five indicates the criteria significantly exceeds expectations. Coverage measures
the repeatability packages’ ability to regenerate the images, tables, and log files presented in
the competition. Instructions measures the packages’ ability to describe to another researcher
how to reproduce the results, including installation of the tool and how to execute it. Quality
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Category Tool Dockerfile? Execution Scripts?
AFF Hylaa Yes Yes

SpaceEx Yes Yes
CORA No Yes
JuliaReach Yes Yes

AINNCS nnv Yes Yes
Verisig Yes Yes

FALS FalStar No Yes
HBMC BACH Yes Yes
HPWC BACH Yes Yes

PHAVer No Yes
PHAVerLite Yes Yes

HSTP KeYmaera X 443 Yes Yes
KeYmaera X 463 Yes Yes

NLN Ariadne Yes Yes
CORA No Yes
Isabelle Yes Yes
JuliaReach Yes Yes

SM HYPEG No Yes
LyapMMC Yes Yes
SCDPN Yes Yes
StocHy Yes Yes

Table 1: Summary of repeatability artifacts for each category and tool that participated in the
evaluation.

measures the packages’ level of documentation and trustworthiness of results with respect to
the quality of the software tool and the results it produces. This report does not describe the
ratings of these review criteria for each tool evaluated, only the aggregate result of whether the
submission was repeatable or not.

The participants were sent instructions to provide their tool setup instructions and tool
execution commands for the benchmarks evaluated in their respective categories, which were
collected on a Git repository (https://gitlab.com/goranf/ARCH-COMP) by the competitors
issuing commits and subsequent pull/merge requests that were reviewed and approved by the au-
thor. The repeatability evaluation was performed on the competition benchmarks, the selection
of which has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH),
which is visible for registered users and registration is open for anyone.

For all the tools listed above, which are those participating in the repeatability evaluation,
all were evaluated to have passed the repeatability evaluation with their benchmark analysis
results deemed repeatable. The repeatability evaluation was conducted by the author, and
took approximately two weeks to complete. Relative to past iterations of the repeatability
evaluations, where the evaluation was conducted primarily on a VMWare virtual machine by
installing and executing all the tools, the usage of Docker significantly simplified the repeata-
bility and we strongly encourage using this type of mechanism for repeatability evaluations.
All tools were able to be installed by setting up the Docker containers, then executed by the
author with their provided Dockerfiles and instructions, but the author interacted with some
tool developers for additional instruction for installing, executing, and/or plotting their results,
in some cases interacting through the version control repository. Overall, the tool developers
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provided sufficient information to install, execute, and repeat the results they obtained in the
competition, although there were some issues with installation, such as missing dependencies
or incompatible library versions. The majority of the tool authors used Docker by providing
Dockerfiles, and also provided a script to execute their tool with appropriate parameters for all
the benchmarks.

The host machine (MRepeatability Host) used for executing the tools was a Microsoft Surface
Book 2 with a quad-core (8 logical cores) Intel Core i7 8650U processor at 1.90GHz and 16GB
RAM. Docker Desktop for Windows version 2.0.0.3 (31259, build: 8858db3) was used and
containers (MRepeatability VM) were configured with 2 available cores and 8 GB available memory.

3 Conclusion and Outlook

This report presents a summary of the repeatability evaluation for the third competition
for the formal verification of continuous and hybrid systems (ARCH-COMP’19), conducted
as part of the ARCH’19 workshop at CPS-IoT Week’19. The detailed reports for the
categories can be found in the proceedings (https://cps-vo.org/group/ARCH/proceedings)
and on the ARCH website (http://cps-vo.org/group/ARCH). All documentation, bench-
marks, and execution scripts for the repeatability evaluation are also archived on the
ARCH website, and authors contributed their repeatability evaluations to the Git repository:
https://gitlab.com/goranf/ARCH-COMP.

For future competitions and repeatability evaluations, several factors may still be improved
by the community in future competitions. First, while the somewhat common input format of
SpaceEx in part via HyST [2] provides some means for standardizing problem specifications,
there is still a greater need for utilizing a common language for specifying models and speci-
fications. Particularly, for the stochastic models category, there are currently no standardized
formats, so effort is highly recommended to address this standardization, although this area is
even more challenging than non-stochastic hybrid systems, as there are many ways to model
sources of uncertainty (such as through stochastic transitions a la Markov chain transitions,
continuous uncertainty with stochastic differential equations, etc.). Similarly, for the AINNCS
category, standardization of formats for representing both plants (e.g. as SpaceEx) and ma-
chine learning components (e.g., neural networks) should be standardized, and for the neural
networks, recent efforts such as the Open Neural Network Exchange (ONNX) format or the
more recent formalization of neural network semantics and specifications such as VNN-LIB
should be leveraged. Providing the ability to specify comparable parameters across different
tools, as well as the particular problem domain/category (verification vs. falsification, etc.),
remains a major challenge.

Second, a greater challenge still remains compared to standardizing inputs, is determining
more quantitative means to compare the output results of the tools, although some libraries for
common representations of reachable sets are starting to become available that may aid this
process in the future, such as HyPro [19]. Figures of reachable sets and yes/no/maybe verified
results for a given specification are means to make comparisons currently, but developing and
standardizing a common output format may provide increased benefits and improve the ability
to make quantitative comparisons between methods and tools.

Third, the evaluation and competition so far did not consider any performance compar-
isons, but as the competition evolves, this remains a significant challenge for the repeatability
evaluation to also repeat the performance results. Thankfully for this challenge, several other
communities have developed means for making fair comparisons with respect to performance
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criteria, such as in the software verification competition (SV-COMP). Beyond these suggested
improvements, there are still numerous aspects to improve, but in part through this competition
and evaluation, our efforts may serve to enhance the reproducibility of computational results
and increase the scientific rigor in verifying these systems.
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A Specification of Used Machines

A.1 MRepeatability Host

• Processor: Intel Core i7-8650U @ 1.90GHz

• Memory: 16GB

• Average CPU Mark on www.cpubenchmark.net: 8923 (full), 2269 (single thread)

• Host Operating System: Windows 10

A.2 MRepeatability VM

• Processor: Intel Core i7-8650U @ 1.90GHz (4 cores available)

• Memory: 8GB

• Average CPU Mark on www.cpubenchmark.net: 8923 (full), 2269 (single thread)

• Docker Desktop for Windows Version 2.0.0.3 (31259, Build: 8858db3), various container
operating systems used per individual participant Dockerfiles and dependencies
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