
EPiC Series in Computing

Volume 61, 2019, Pages 162–169

ARCH19. 6th International Workshop on Applied
Verification of Continuous and Hybrid Systems

ARCH-COMP19 Repeatability Evaluation Report

Taylor T. Johnson1

Vanderbilt University,
Department of Electrical Engineering and Computer Science,

Institute for Software Integrated Systems,
Nashville, TN, United States

taylor.johnson@vanderbilt.edu

http://www.TaylorTJohnson.com

Abstract

This report presents the results of the repeatability evaluation for the 3rd Interna-
tional Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP’19). The
competition took place as part of the workshop Applied Verification for Continuous and
Hybrid Systems (ARCH) in 2019, affiliated with the Cyber-Physical Systems and Internet
of Things (CPS-IoT Week’19). In its third edition, twenty-five tools submitted artifacts
through a Git repository for the repeatability evaluation, applied to solve benchmark prob-
lems for eight competition categories. The majority of participants adhered to new require-
ments for this year’s repeatability evaluation, namely to submit scripts to automatically
install and execute tools in containerized virtual environments (specifically Dockerfiles to
execute within Docker). The repeatability results represent a snapshot of the current land-
scape of tools and the types of benchmarks for which they are particularly suited and for
which others may repeat their analyses. Due to the diversity of problems in verification
of continuous and hybrid systems, as well as basing on standard practice in repeatability
evaluations, we evaluate the tools with pass and/or failing being repeatable.

1 Introduction

The presented repeatability evaluation for verification of continuous and hybrid systems sum-
mary for the ARCH friendly competition aims at providing an overview of the usability and
reproducibility of results for the current capabilities of verification tools. The verification com-
munity has a rich history of publishing strong papers emphasizing computational contributions,
but subsequent re-creation of these computational elements is often challenging because details
of the implementation are unavoidably absent in the paper due to space restrictions. To ad-
dress this challenge, some authors post code and data to their websites, but there is often only
marginal formal incentive to do so, and typically there is no easy way to determine whether
others can actually use or extend the results. Owing to such factors, computational results
often become non-reproducible, sometimes even by the research group which originally pro-
duced them. The goal of this repeatability evaluation process is to improve the reproducibility

G. Frehse and M. Althoff (eds.), ARCH19 (EPiC Series in Computing, vol. 61), pp. 162–169

http://www.TaylorTJohnson.com


ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

of computational results for the tools competing on the selected benchmarks evaluated in the
competition. More broadly, a key goal of the competition itself is to improve repeatability
and interoperability of these software tools, to help develop more standard benchmarks for
evaluating tools and easing comparisons of these tools and their analyses.

This report summarizes the repeatability evaluation (RE) results obtained in the 2019
friendly competition of the ARCH workshop1. The obtained results in the competition have
been verified by an independent repeatability evaluation conducted by the author of this report.
To establish further trustworthiness of the results, the artifacts, code, documentation, bench-
marks, etc. with which the repeatability results have been obtained are publicly available on
the ARCH website (https://cps-vo.org/group/ARCH) and a Git version control repository
(https://gitlab.com/goranf/ARCH-COMP).

The repeatability evaluation of the competition featured eight categories and 21 software
tools, where several tools participated in multiple categories but have been counted distinctly
for their participation in each category. The categories of problems in which tools participated
in the repeatability evaluation are:

• AFF: affine and piecewise affine dynamics (4 tools),

• AINNCS: artificial intelligence and neural network control systems (2 tools),

• FALS: falsification (1 tool),

• HBMC: bounded model checking (1 tools),

• HPWC: piecewise constant dynamics (3 tools),

• HSTP: hybrid systems theorem proving (2 tools),

• NLN: nonlinear dynamics (4 tools), and

• SM: stochastic models (4 tools).

The tools evaluated, broken into their competition categories are:

• AFF

– CORA: Nikolas Kochdumper and Matthias Althoff [1],

– HyLAA: and continuous-time HyLAA (HyLAAC): Stanley Bak [3],

– SpaceEx: Goran Frehse [11], and

– JuliaReach: Marcelo Forets [8].

• AINNCS

– nnv: Hoang-Dung Tran, Diego Manzanas-Lopez, Patrick Musau, Weiming Xiang,
and Taylor T. Johnson [21, 20], and

– Verisig: Taylor Carpenter and Radoslav Ivanov [14].

• FALS

– FalStar: Gidon Ernst, Zhenya Zhang, Paolo Arcaini, and Yoriyuki Yamagata [22].

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

163

https://cps-vo.org/group/ARCH
https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH


ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

• HBMC

– Bach: Lei Bu [9].

• HPWC

– Bach: Lei Bu [9]

– PHAVer-lite: Enea Zaffanella, and

– SpaceEx (and the PHAVer scenario): Goran Frehse [11].

• HSTP

– KeYmaera 3: Stefan Mitsch and Andre Platzer [17], and

– KeYmaera X: Stefan Mitsch, Andre Platzer, Andrew Sogokon, and Yong Kiam
Tan [12].

• NLN

– Ariadne: Luca Geretti and Pieter Collins [4, 5],

– CORA: Niklas Kochdumper and Matthias Althoff [1],

– Isabelle/HOL: Fabian Immler [13, 15], and

– JuliaReach: Marcelo Forets and Christian Schilling [7].

• SM (repeatability provided by Nathalie Cauchi)

– HYPEG: Carina Pilch and Anne Remke [16],

– LyapMMC: Mahmoud Salamati and Sadegh Soudjani [18],

– SCDPN: Henk Blum and Hao Ma [6], and

– StocHy: Nathalie Cauchi and Alessandro Abate [10].

Several tools that participated in the competition did not participate in the repeatability
evaluation, so only those that participated are listed. In future iterations, we encourage all par-
ticipants of the competition to complete the repeatability evaluation to make it easier for others
in the research community to build on these results, and are considering requiring repeatability
participation in the future.

2 Repeatability Evaluation Plan, Execution, and Results

The repeatability evaluation was conducted following the presentations of the competition re-
sults at the ARCH’19 workshop. The basic mechanism followed in the repeatability evaluation
was similar to that done in related conferences, such as the Hybrid Systems: Computation
Control conference series, which has featured a repeatability evaluation in the past several iter-
ations, including this year (http://hscc2019.eecs.umich.edu/html/re.html). Three basic criteria
are generally evaluated: coverage, instructions, and quality, each of which may be rated on a
scale of one through five, where one indicates a missing component or significantly below ac-
ceptability, and five indicates the criteria significantly exceeds expectations. Coverage measures
the repeatability packages’ ability to regenerate the images, tables, and log files presented in
the competition. Instructions measures the packages’ ability to describe to another researcher
how to reproduce the results, including installation of the tool and how to execute it. Quality

164

http://hscc2019.eecs.umich.edu/html/re.html


ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

Category Tool Dockerfile? Execution Scripts?
AFF Hylaa Yes Yes

SpaceEx Yes Yes
CORA No Yes
JuliaReach Yes Yes

AINNCS nnv Yes Yes
Verisig Yes Yes

FALS FalStar No Yes
HBMC BACH Yes Yes
HPWC BACH Yes Yes

PHAVer No Yes
PHAVerLite Yes Yes

HSTP KeYmaera X 443 Yes Yes
KeYmaera X 463 Yes Yes

NLN Ariadne Yes Yes
CORA No Yes
Isabelle Yes Yes
JuliaReach Yes Yes

SM HYPEG No Yes
LyapMMC Yes Yes
SCDPN Yes Yes
StocHy Yes Yes

Table 1: Summary of repeatability artifacts for each category and tool that participated in the
evaluation.

measures the packages’ level of documentation and trustworthiness of results with respect to
the quality of the software tool and the results it produces. This report does not describe the
ratings of these review criteria for each tool evaluated, only the aggregate result of whether the
submission was repeatable or not.

The participants were sent instructions to provide their tool setup instructions and tool
execution commands for the benchmarks evaluated in their respective categories, which were
collected on a Git repository (https://gitlab.com/goranf/ARCH-COMP) by the competitors
issuing commits and subsequent pull/merge requests that were reviewed and approved by the au-
thor. The repeatability evaluation was performed on the competition benchmarks, the selection
of which has been conducted within the forum of the ARCH website (cps-vo.org/group/ARCH),
which is visible for registered users and registration is open for anyone.

For all the tools listed above, which are those participating in the repeatability evaluation,
all were evaluated to have passed the repeatability evaluation with their benchmark analysis
results deemed repeatable. The repeatability evaluation was conducted by the author, and
took approximately two weeks to complete. Relative to past iterations of the repeatability
evaluations, where the evaluation was conducted primarily on a VMWare virtual machine by
installing and executing all the tools, the usage of Docker significantly simplified the repeata-
bility and we strongly encourage using this type of mechanism for repeatability evaluations.
All tools were able to be installed by setting up the Docker containers, then executed by the
author with their provided Dockerfiles and instructions, but the author interacted with some
tool developers for additional instruction for installing, executing, and/or plotting their results,
in some cases interacting through the version control repository. Overall, the tool developers

165

https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH


ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

provided sufficient information to install, execute, and repeat the results they obtained in the
competition, although there were some issues with installation, such as missing dependencies
or incompatible library versions. The majority of the tool authors used Docker by providing
Dockerfiles, and also provided a script to execute their tool with appropriate parameters for all
the benchmarks.

The host machine (MRepeatability Host) used for executing the tools was a Microsoft Surface
Book 2 with a quad-core (8 logical cores) Intel Core i7 8650U processor at 1.90GHz and 16GB
RAM. Docker Desktop for Windows version 2.0.0.3 (31259, build: 8858db3) was used and
containers (MRepeatability VM) were configured with 2 available cores and 8 GB available memory.

3 Conclusion and Outlook

This report presents a summary of the repeatability evaluation for the third competition
for the formal verification of continuous and hybrid systems (ARCH-COMP’19), conducted
as part of the ARCH’19 workshop at CPS-IoT Week’19. The detailed reports for the
categories can be found in the proceedings (https://cps-vo.org/group/ARCH/proceedings)
and on the ARCH website (http://cps-vo.org/group/ARCH). All documentation, bench-
marks, and execution scripts for the repeatability evaluation are also archived on the
ARCH website, and authors contributed their repeatability evaluations to the Git repository:
https://gitlab.com/goranf/ARCH-COMP.

For future competitions and repeatability evaluations, several factors may still be improved
by the community in future competitions. First, while the somewhat common input format of
SpaceEx in part via HyST [2] provides some means for standardizing problem specifications,
there is still a greater need for utilizing a common language for specifying models and speci-
fications. Particularly, for the stochastic models category, there are currently no standardized
formats, so effort is highly recommended to address this standardization, although this area is
even more challenging than non-stochastic hybrid systems, as there are many ways to model
sources of uncertainty (such as through stochastic transitions a la Markov chain transitions,
continuous uncertainty with stochastic differential equations, etc.). Similarly, for the AINNCS
category, standardization of formats for representing both plants (e.g. as SpaceEx) and ma-
chine learning components (e.g., neural networks) should be standardized, and for the neural
networks, recent efforts such as the Open Neural Network Exchange (ONNX) format or the
more recent formalization of neural network semantics and specifications such as VNN-LIB
should be leveraged. Providing the ability to specify comparable parameters across different
tools, as well as the particular problem domain/category (verification vs. falsification, etc.),
remains a major challenge.

Second, a greater challenge still remains compared to standardizing inputs, is determining
more quantitative means to compare the output results of the tools, although some libraries for
common representations of reachable sets are starting to become available that may aid this
process in the future, such as HyPro [19]. Figures of reachable sets and yes/no/maybe verified
results for a given specification are means to make comparisons currently, but developing and
standardizing a common output format may provide increased benefits and improve the ability
to make quantitative comparisons between methods and tools.

Third, the evaluation and competition so far did not consider any performance compar-
isons, but as the competition evolves, this remains a significant challenge for the repeatability
evaluation to also repeat the performance results. Thankfully for this challenge, several other
communities have developed means for making fair comparisons with respect to performance

166

https://cps-vo.org/group/ARCH/proceedings
http://cps-vo.org/group/ARCH
https://gitlab.com/goranf/ARCH-COMP


ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

criteria, such as in the software verification competition (SV-COMP). Beyond these suggested
improvements, there are still numerous aspects to improve, but in part through this competition
and evaluation, our efforts may serve to enhance the reproducibility of computational results
and increase the scientific rigor in verifying these systems.

4 Acknowledgments

The material presented in this paper is based upon work supported by the National Science
Foundation (NSF) under grant number SHF 1736323, the Air Force Office of Scientific Re-
search (AFOSR) under contract number FA9550-18-1-0122, and the Defense Advanced Research
Projects Agency (DARPA) under contract number FA8750-18-C-0089. The U.S. government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views
of AFOSR, DARPA, or NSF.

A Specification of Used Machines

A.1 MRepeatability Host

• Processor: Intel Core i7-8650U @ 1.90GHz

• Memory: 16GB

• Average CPU Mark on www.cpubenchmark.net: 8923 (full), 2269 (single thread)

• Host Operating System: Windows 10

A.2 MRepeatability VM

• Processor: Intel Core i7-8650U @ 1.90GHz (4 cores available)

• Memory: 8GB

• Average CPU Mark on www.cpubenchmark.net: 8923 (full), 2269 (single thread)

• Docker Desktop for Windows Version 2.0.0.3 (31259, Build: 8858db3), various container
operating systems used per individual participant Dockerfiles and dependencies

References

[1] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

[2] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HyST: A source transformation and
translation tool for hybrid automaton models. In Proc. of the 18th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2015.

[3] Stanley Bak and Parasara Sridhar Duggirala. HyLAA: A tool for computing simulation-equivalent
reachability for linear systems. In Proceedings of the 20th International Conference on Hybrid
Systems: Computation and Control, HSCC ’17, pages 173–178, New York, NY, USA, 2017. ACM.

167

www.cpubenchmark.net
www.cpubenchmark.net


ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

[4] Andrea Balluchi, Alberto Casagrande, Pieter Collins, Alberto Ferrari, Tiziano Villa, and Alberto L.
Sangiovanni-Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In
PROCEEDINGS OF THE INTERNATIONAL SYPOSIUM ON MATHEMATICAL THEORY
OF NETWORKS AND SYSTEMS, 2006.

[5] Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Ferrari, Luca Geretti, and Tiziano Villa.
Assume-guarantee verification of nonlinear hybrid systems with ariadne. International Journal of
Robust and Nonlinear Control, 24(4):699–724, 2014.

[6] Henk A.P. Blom, Hao Ma, and G.J. (Bert) Bakker. Interacting particle system-based estimation
of reach probability for a generalized stochastic hybrid system. IFAC-PapersOnLine, 51(16):79 –
84, 2018. 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2018.

[7] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling.
Juliareach: A toolbox for set-based reachability. In Proceedings of the 22Nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’19, pages 39–44, New York,
NY, USA, 2019. ACM.

[8] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Frédéric Viry, Andreas Podelski, and Christian
Schilling. Reach set approximation through decomposition with low-dimensional sets and high-
dimensional matrices. In Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control (Part of CPS Week), HSCC ’18, pages 41–50, New York, NY, USA,
2018. ACM.

[9] Lei Bu, You Li, Linzhang Wang, and Xuandong Li. Bach: Bounded reachability checker for linear
hybrid automata. In Proceedings of the 2008 International Conference on Formal Methods in
Computer-Aided Design, FMCAD ’08, pages 9:1–9:4, Piscataway, NJ, USA, 2008. IEEE Press.

[10] Nathalie Cauchi and Alessandro Abate. StocHy: Automated verification and synthesis of stochastic
processes. In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 247–264, Cham, 2019. Springer International Publishing.

[11] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Computer Aided Verification (CAV), LNCS. Springer, 2011.

[12] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeYmaera X:
An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25, pages 527–538, Cham, 2015. Springer International
Publishing.

[13] Fabian Immler. Verified reachability analysis of continuous systems. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems: 21st Interna-
tional Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings, pages 37–51.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[14] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: Verifying
safety properties of hybrid systems with neural network controllers. In Proceedings of the 22Nd
ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’19, pages
169–178, New York, NY, USA, 2019. ACM.

[15] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[16] Carina Pilch, Fabian Edenfeld, and Anne Remke. Hypeg: Statistical model checking for hybrid
petri nets: Tool paper. In Proceedings of the 11th EAI International Conference on Performance
Evaluation Methodologies and Tools, VALUETOOLS 2017, pages 186–191, New York, NY, USA,
2017. ACM.

[17] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem prover for hybrid systems
(system description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Automated Reasoning, pages 171–178, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

168



ARCH-COMP19 Repeatability Evaluation Report T.T. Johnson

[18] Mahmoud Salamati, Sadegh Soudjani, and Rupak Majumdar. Approximate time bounded reacha-
bility for CTMCs and CTMDPs: A lyapunov approach. In Annabelle McIver and Andras Horvath,
editors, Quantitative Evaluation of Systems, pages 389–406, Cham, 2018. Springer International
Publishing.

[19] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan Kowalewski. HyPro: A
c++: A library of state set representations for hybrid systems reachability analysis. In Clark
Barrett, Misty Davies, and Temesghen Kahsai, editors, NASA Formal Methods: 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, pages 288–294.
Springer International Publishing, 2017.

[20] Weiming Xiang and Taylor T Johnson. Reachability analysis and safety verification for neural
network control systems. arXiv preprint arXiv:1805.09944, 2018.

[21] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and
verification for multi-layer neural networks. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), March 2018.

[22] Z. Zhang, G. Ernst, S. Sedwards, P. Arcaini, and I. Hasuo. Two-layered falsification of hybrid
systems guided by monte carlo tree search. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 1–1, 2018.

169


	Introduction
	Repeatability Evaluation Plan, Execution, and Results
	Conclusion and Outlook
	Acknowledgments
	Specification of Used Machines
	MRepeatability_Host
	MRepeatability_VM


