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Abstract

Today’s electronic systems must simultaneously fulfill strict requirements on security
and reliability. In particular, their cryptographic modules are exposed to faults, which
can be due to natural failures (e.g., radiation or electromagnetic noise) or malicious fault-
injection attacks. We present an architecture based on a new class of error-detecting codes
that combine robustness properties with a minimal distance. The new architecture guaran-
tees (with some probability) the detection of faults injected by an intelligent and strategic
adversary who can precisely control the disturbance. At the same time it supports auto-
matic correction of low-multiplicity faults. To this end, we discuss an efficient technique to
correct single errors while avoiding full syndrome analysis. We report experimental results
obtained by physical fault injection on the SAKURA-G FPGA board.

1 Introduction

With the transition to the cyberphysical system (CPS) paradigm, digital circuits are increas-
ingly used for functions that are safety- and security-critical at the same time. For example,
emerging car electronics will have to support conventional safety features (like anti-lock brak-
ing system or airbag control) and advanced electronic drive-assist functions, which are safety-
relevant and must be realized in a failure-proof manner. However, the same electronics will
provide the customer with access to social networks and payment functions over the Internet,
which makes it a target of deliberate security attacks. Moreover, emerging electronic systems
are designed to operate in harsh environments (including temperature extremes, vibration, hu-
midity), increasing the chance of failures due to natural causes: noise and aging. At the same
time, their components often lack a “protective perimeter” known from conventional servers
located in an access-controlled building and operated by authorized personnel. Cyberphysical
infrastructures, vehicles and production systems have parts designed to be placed in public
spaces and accessible by anybody, including potential attackers. Therefore, malicious attacks
on hardware components can be expected and must be counteracted.

A variety of defences on different abstraction levels have been suggested against natural
failures and malicious attacks alike [14]. Here, we relate only to failures and attacks that create
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a tangible and observable change in the input-output behavior of a circuit. In the context
of natural failures, we do not consider mechanisms with purely parametric effects (e.g., ones
which increase the circuit’s power consumption but have no pronounced implications on the
logic level). In the malicious case, we restrict ourselves to attacks that actively manipulate
the operation of a circuit; purely passive analysis [16] is not in scope of this paper. Such
fault-injection attacks [21] can aim at disrupting the application’s control flow (e.g., jumping
over password checks [27] or, in case of cryptographic circuitry, extraction of secret keys via
differential fault analysis [3] or fault-sensitivity analysis [15]. We refer by the term “fault” to
any logical effect due to either a natural failure or a malicious (active) attack.

Out of various countermeasures against natural and malicious faults, approaches based on
error-detecting codes (EDCs) stand out. They can be applied to protect memories, communi-
cation channels and combinational circuitry. In the case of natural failures or poorly-controlled
malicious fault injections, EDC competes with space- and time-redundancy techniques, in-
cluding duplication, modular redundancy, and commit-rollback [14]. However, an intelligent
attacker with high-precision fault-injection equipment can circumvent this protection by in-
jecting multiple faults into redundant copies such that they cancel each other out. Recent
developments such as dual-beam laser fault injectors make this threat practical [24]. On the
contrary, special security-oriented EDCs have been proposed [11, 25]. They are designed to
counteract a strategic attacker who knows the defences and aims at circumventing them. It can
be shown that all linear codes offer limited protection against attacks under this assumption,
as there are faults that are never detected. Therefore, the usual EDCs like parity or Hamming
codes are inadequate in this case, and dedicated non-linear security-oriented codes are required.

In this paper, we consider and optimize architectures that are designed to handle natural and
malicious faults. The architectures are based on a recent code construction, the Rabii-Keren
(RK) codes [22] in their generalized form [23]. RK codes are defined on the code alphabet of
size q, which is a power of 2. For example, q = 24 (q = 28) is a natural choice for a circuit
with a state organized in 4-bit nibbles (8-bit bytes): a fault that affects k nibbles (bytes)
directly corresponds to an error of multiplicity k which can be detected and/or corrected. RK
codes combine three properties: a user-defined distance (and therefore the possibility of error
correction), a low masking probability (a metric for resilience against malicious attacks), and
a high rate (ratio between data and check bits). The code-based architecture is summarized
in Fig. 1; notice that the syndrome of the code is intended for processing at the system level,
which can also take into account further sources of information to decide whether the detected
fault was malicious or not and whether it should be corrected or an alarm should be raised.

The feature to reliably correct errors up to a certain multiplicity is useful for both natural
and malicious faults. If a fault could be corrected, the system can proceed with its regular
operation, while error-detection without correction requires some handling, e.g., re-execution
of the affected computation. Therefore, error-correction is attractive in particular for safety-
critical systems with real-time requirements, like aircraft or chemical plants which cannot simply
stop operation and wait for fault handling. Note that even if an error can be corrected, the
system may still have to record the fault event. Moreover, a system may monitor the faults to
decide which of them are due to natural causes or due to malicious tampering. The observed
fault effect (fault rate and multiplicity) can be an input to such a monitoring procedure, but
in general, further inputs are needed for reliably distinguishing between natural and malicious
faults. For instance, a system which operates in a high-radiation environment may be equipped
with a radiation sensor; if it reports high radiation, then the fault is likely natural.

Both natural and malicious faults can result in correctable or uncorrectable errors. If a
natural fault stems from a minor disturbance (e.g., a low-energy particle discharge), it will
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Figure 1: Detection, correction and validation architecture

likely affect only a few bits and the resulting error will be corrected and no further action
will be needed. Malicious attacks often have quite strong effects; e.g., if the circuit’s clock is
glitched or the voltage is lowered [2], many outputs will typically be affected. Errors stemming
from such attacks should be detected but it is unrealistic to reliably correct them. Even very
pinpointed attacks, like laser fault injections which aim at flipping one particular logic gate
output or memory cell, typically start with a tuning phase when (detectable but uncorrectable)
multi-bit errors are produced. If an attack is run with a restricted fault model, like single-byte
faults in Tunstall’s attack on AES [26], the error can be corrected by the RK code with single-
error correction capability (distance 3 or larger). Since the correction would happen within the
circuit, the attacker would observe no fault-affected ciphertext and therefore would not be able
to mount the attack.

In this paper, we present an efficient correction procedure for single errors using RK codes.
The procedure, based on a compact Error Coefficient and Location Table (ECLT) is a substan-
tial improvement compared with the regular syndrome analysis. We report experiments using
a clock glitch based fault injector on cryptographic circuits (full- and small-scale AES [4], LED,
PRESENT) on the SAKURA FPGA board. The experiments show that the architectures are
capable of detecting errors of arbitrary multiplicity and correcting single errors, reliably rec-
ognizing erroneous corrections. The architectures are especially effective when they combine
codes with a distance larger than 3 and an additional system-level validation by an outer code.

The remainder of the paper is organized as follows. Section 2 gives background on error-
detecting codes. Sections 3 and 4 outline the detection and correction architecture for codes of
distance 3 and distance larger than 3, respectively. Experimental results are reported in Section
5. Section 6 concludes the paper.

2 Security oriented codes
Given a vector space Fn

q of dimension n over Fq = GF (q), a code C is a subset of size |C|. A

code C is said to be systematic if every codeword is of the form c = (x,w(x)) where x ∈ Fk
q is

the information portion, and w ∈ Fr
q is the redundancy portion.

Let c ∈ C be the correct codeword and denote by ĉ the distorted word. It is convenient
to model a fault that distorts a symbols as an additive error e = ĉ − c of Hamming weight
a; a is called the error multiplicity. In this paper an error is represented as a q-ary vector
e = (ex, ew) ∈ Fn

q where ex is the error in the information portion and ew is the error in the
redundancy portion. In addition, the multiplicity of a malicious error is considered here as
arbitrary, i.e., 1 ≤ a ≤ n.

The effectiveness of a reliability oriented code is usually measured in terms of its decoding
error, that is the probability the decoder will fail to correctly decode a tampered word. Since
the most probable error has the lowest Hamming weight, these codes are evaluated using the
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minimum distance d which is the minimal Hamming distance between all codewords. A secu-
rity oriented code is evaluated using the maximal error masking probability, Q, which is the
maximum probability that any non-zero error e will map a codeword to another codeword in
C. In this sense, when codes are analysed for reliability, the average case is considered, whereas
the analysis for security is based on the worst case scenario.

The upper bound on the minimum distance of the code d is linearly dependent on the
number of redundancy symbols, d ≤ r + 1; whereas the lower bound on Q is exponentially
dependent on the number of redundancy symbols.

A security oriented code can have a deterministic encoder [9, 1, 17, 10] or incorporate
randomness[5, 29, 19] (the latter includes the non-malleable codes [6]). The error detection
capabilities of codes with random-encoding depend on the entropy of the random number
generator (RNG). However, the hardware implementation of a true RNG is expensive and
difficult, and the RNG must be shielded from fault injection attacks which could neutralize it.
For this reason, codes with deterministic encoding are an attractive alternative. In fact, when
properly designed, such codes can be more effective than random codes of the same rate [12].
This work deals with robust codes, which are codes with deterministic encoding.

Notice that an additive error e is masked by a codeword c ∈ C if c ⊕ e ∈ C. Similarly, an
error e is detected by a codeword c ∈ C if c ⊕ e /∈ C. This leads to the following definition of
the error masking probability:

Definition 1. The error masking probability of an error e, Q(e), is the probability that an error
e will be masked by the codewords of C. That is,

Q(e) =
∑
c∈C

Pr(c)δC(c⊕ e)

where Pr(c) is the probability of the codeword c and δC is the characteristic function of C,

δC(z) =

{
0 if z /∈ C
1 if z ∈ C

In the case of uniformly distributed codewords, it is convenient to represent the error masking
probability in terms of the autocorrelation function of the code. That is, Q(e) = R(e)/qk where

R(e) = |{c | c, c+ e ∈ C}| =
∑
z∈Fn

q

δC(z)δC(z ⊕ e).

For some codes the set of codewords that mask an error form a linear subspace. Thus a good
code will be a union of small disjoint subspaces. On the relationship between the autocorrelation
function and the representation of a code as a union of disjoint subspaces see [13].

The detection kernel of a code, denoted Kd, contains all the error vectors that are never
detected by the codewords of C, i.e. all the errors that are masked with probability Q(e) = 1.

Definition 2. (Robust codes) A code C is called robust if any non-zero error can be detected
with some probability greater than zero. Meaning, Q(e) < 1 for any non-zero error e, or
alternatively, Kd = {0}.

Definition 3. (Partially Robust codes) A code C is partially robust if it has a detection kernel
of size 1 < |Kd| < |C|.

Linear codes have a detection kernel Kd = C, and therefore linear codes are not robust and
cannot be used for security.
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There are two known basic high rate binary systematic robust codes: the Quadratic System-
atic (QS) code [9], and the Punctured Cubic (PC) code [1], [17]. All other systematic robust
codes use these codes as base codes. While the QS code is an optimum robust code when
k = 2sr and q is any power of a prime number, and the PC code is a close to optimum robust
code for any 1 < r ≤ k and q is a power of two, neither of these codes have correction capabil-
ities. Some minimum distance partially robust codes exist, for example the Vasil’ev code [28],
the Phelps code [20], the one switching code, and the generalized cubic code [7], [18]. While
these codes provide the wanted correction capabilities, they are not robust.

In a recent paper Rabii and Keren introduced a construction for a new class of non-linear
robust q-ary codes with q = 2m and error correction capability [22]. The RK codes have higher
code rate than concatenated codes, and at the same time, they are more effective [23]. Rabii
and Keren did not present encoding, decoding, and error correction algorithms, and their code
was not implemented and tested in a realistic environment. This paper aims to close this gap.

The RK code is a non-linear robust q-ary code with q = 2m and error correction capability.
The code is built upon systematic linear codes [n, k, d]q where the n − k redundant symbols
that were originally allocated to increase the minimum distance of the code, are modified to
provide both correction capability and robustness. The following (generalized) definition of the
RK code is taken from [23].

Construction 1. (Rabii-Keren code) Let f : F2m 7→ F2m be an Almost Perfect Nonlinear
(APN) bijective function, and let G = (I|A) be a generator matrix of a systematic linear q-ary

code C with minimum distance dL where A = {aij}k,ri,j=1, aij ∈ F2m . Let x = (x1, x2, . . . , xk)

where xi ∈ F2m for 1 ≤ i ≤ k. Code C̃ is defined as follows,

C̃ = {(x,w) : x ∈ Fk
2m , w = (w1, w2, . . . , wr) ∈ Fr

2m , wj =

k∑
i=1

aijf(xi)}

The robustness and the effectiveness of the RK code is due to the high non-linearity of f .
For odd values of m, the best function to use is the cubic function, f(x) = x3, which is an
invertible APN function of (relatively) small implementation cost [23]. However, as shown in
[23], it is possible to use other functions, for example f(x) = x−1, with even values of m and
to pay with a higher error masking probability Q(e). Namely, the error masking probability of
the codes is Q(e) ≤ 2/q for odd values of m and 4/q for even m.

In what follows we present a novel low-cost implementation of error detection and correction
architectures based on RK codes. We start with codes of distance d = 3 and then generalize
the decoder for codes with d > 3. We demonstrate the effectiveness of these codes in correcting
single erroneous SBox’s output and detecting multi-erroneous SBox’s outputs in Section 5.

3 Detection and Correction Architecture for Rabii-Keren
Codes of Distance 3

In order to use the RK construction, one has to construct a systematic generator matrix for
the linear code. Algorithm 1 constructs a generator matrix based on the check matrix of a
shortened BCH code over an alphabet of size q. Note that q = 16 for SBoxes that work on 4-bit
nibbles, and q = 256 for bytes.

Consider, for example, the (n = 19, |C| = 24·16, d = 3)16 Rabii-Keren code for protecting
16 4-bit SBoxes (q = 16) by using 12 redundant bits; The code is based on the [19, 16, 3]16
shortened BCH code with distance d = 3 . The check matrix of the shortened BCH code,
Horig,3, is the following:
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Algorithm 1 Construct A

1: Choose the size of the alphabet, q. (In this paper, q = 16 = 24.)
2: Choose the dimension of the code, k.
3: Choose the distance of the code, d. (d is assumed to be relatively small.)
4: Determine the root field using the rule: qm − 1 > k + (d − 1)m. We want to choose the

minimal m that will uphold the condition. (In this paper m = 2 was sufficient.)
5: Choose b the power of first root in the sequence of d− 1 consecutive roots of the generator

polynomial. (Usually b = 1 is chosen for a simple code, however we found that by choosing
b = 0 we could use a smaller number of redundancy symbols.)

6: Once d, b, q,m are determined, find r the degree of the generator polynomial.
7: Shorten the code by defining ñ = k + r given the r that we found.
8: Represent the shortened check matrix

Horig,d =


1 αb · · · αb(k−1) αbk · · · αb(ñ−1)

1 α(b+1) · · · α(b+1)(k−1) α(b+1)k · · · α(b+1)(ñ−1)

...
...

...
...

1 α(b+d−2) · · · α(b+d−2)(k−1) α(b+d−2)k · · · α(b+d−2)(ñ−1)

=(Hl|Hr) (1)

9: Compute the check matrix Hd = (Ad |I), where Ad = H−1r Hl. Note that Hr is an invertible
matrix since the code is cyclic.

Horig,3 =

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 5 9 3 1 5 0 13 7 3 3 8 11 6 11 4 6 15
0 7 11 2 2 1 3 4 3 9 4 10 7 2 12 4 7 0 1

← α0

← α1

Note that the matrix Horig,d defined in Step 8 of Algorithm 1 has elements from GF (qm).
Since the fields GF (qm) and GF (q)m are isomorphic, an element in αi in Horig,d can be rep-
resented as an m tuple (ai,0, . . . ai,m−1). In our case, αi corresponds to the pair (ai,0, ai,1) ∈
GF (16)2. This equivalent representation was used to define the check matrix Horig,3 over
GF (16); namely, the numbers in Horig,3 represent elements in F24 defined with the polynomial
π(x) = x4 + x+ 1.

To simplify the implementation complexity we work with a systematic check matrix H3 =
(A3, I). The matrix A3 used for RK construction was obtained by multiplying Horig,3 by H−1r ,

A3 =

 6 2 12 2 5 12 3 10 0 15 12 10 4 6 9 15
9 1 3 11 6 4 1 11 10 12 14 4 4 13 3 5
14 2 14 8 2 9 3 0 11 2 3 15 1 10 11 11

 .

The general process of error correction is the same for a linear code and a non-linear code (the
linear version can be obtained by skipping non-linear operations, in this case the inversion). Let
c = (x,w) be the correct codeword, and let z = (zx, zw) = (x+ex, w+ew) be the word received
by the checker, and define y = (yx, yw) = (z−1x , zw). Fig. 3 shows the single error correction
architecture for f(x) = x−1, and the general correction process described in Algorithm 2 does
the following:

The linear decoder computes the syndrome (Algorithm 2, line 1)

s = Hd · yT = (Ad, I)((x+ ex)−1, x−1AT
d + ew)T = (((x+ ex)−1 + x−1)AT

d + ew)T
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Algorithm 2 Correct single error

1: Calculate syndrome s = Hdy
T .

2: Normalize the first (m+ 1) symbols of the syndrome ŝ = (s1/sj , s2/sj , ..., sm+1/sj)
T .

3: Find normalized syndrome in ECLT and determine fi and i (see, e.g., Tables 1 and 2).
4: If found, use ŷ = y − sjfixi to correct error.
5: Update the syndrome s̃ = s− sjfihi.
6: If the syndrome is equal to zero, there was a single error.
7: Else, more than one error occurred.

In general, each syndrome is associated with an error vector, ê = (êx, êw), and the decoded ẑ is

ẑ = ((z−1x + êx)−1, zw + êw).

If the distance d(z, c) is less than or equal to the correction capability of the code, the obtained ẑ
is in fact the desired codeword c. In other words, if the number of distorted symbols is less than
or equal to the correction capability of the code, the decoder will work as desired. Recall that
an error is detected if the syndrome s is not zero. To this end, the decoding process is simply
to re-encode the information portion x̂ = x + ex into ŵ, and compare it with the redundant
portion of the output vector z; i.e., compare the q-ary vectors ŵ and w+ ew. This can be seen
in Fig. 2 (which can be considered a more detailed version of “protected subsystem” in Fig. 1).

Next, the decoder checks whether the error is correctable (Algorithm 2, lines 2-4); Denote
by sj the first value in s that is not equal to zero and by fi the first value in hi that is not

equal to zero. Calculate ŝ = s/sj and ĥi = hi/fi. ŝ = ĥi and therefore s = eiĥi/fi. Overall
we can find the value of ei = sjfi and then correct the single error as ŷ = y − sjfixi where
y is the received word. We can easily find sj when calculating the original syndrome and fi
and i can be stored in an error-coefficient along with the possible corresponding ĥi values. The
error-coefficient and location table (ECLT) is a table of size n× (r+2) where each row contains

a different ĥi of length r, the column indicator i, and the factor fi. Finally, the decoder verifies
that the error has been corrected (lines 5-6).

For example, the table for the (19, 264, 3)16 Rabii-Keren code (described by the above matrix
A3) is shown in Table 1.

Note that the original decoder (based on the original BCH check matrix Horig,3) requires
a table of (q − 1) · n = 15 · 19 entries, each with a syndrome vector (3 q-ary symbols or 12
bits), position (5 bits), and the value of the error (4 bits). This amounts to 15 · 19 · 21 bits. In
contrast, the proposed architecture in Fig. 3 employs a table with 19 entries of 18 bit each.

Clearly, when protecting a full scale cipher with 8-bit SBox, the size of the table can be
reduced from 255n to n entries. The following example demonstrates how the decoding works
for the (19, 264, 3)16 RK code described above:

A s
x+ex

w+ew

+()‐1
w’

Error Coefficient 
and Location Table 

(ECLT)

+

e
x’()‐1

+ corrected

Figure 2: Decoding process for a Rabii-Keren non-linear code where f(x) = x−1
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Table 1: ECLT for RK code with parameters n = 19, k = 16, d = 3
ĥi i fi

1 10 12 0 7
1 9 1 1 9
1 13 6 2 10
1 12 4 3 9
1 15 5 4 11
1 14 5 5 10
1 14 1 6 14
1 13 0 7 12
0 1 13 8 12
1 10 3 9 8
1 6 13 10 10

ĥi i fi
1 5 8 11 12
1 1 13 12 13
1 5 3 13 7
1 6 5 14 2
1 14 7 15 8
1 0 0 16 1
0 1 0 17 1
0 0 1 18 1

Example 1. Take for example the received word x̂ = [9, 11, 9, 3, 11,3, 2, 2, 12, 7, 1, 13, 1, 9, 3, 5]
and the predicted word x = [9, 11, 9, 3, 11,14, 2, 2, 12, 7, 1, 13, 1, 9, 3, 5].

Using Algorithm 2, we can detect and correct one error:

1. After encoding x̂ using the RK code, the redundancy is w = [0, 8, 10] and the syndrome is
calculated as s = [3; 1; 15].

2. Normalize the syndrome where sj = 3. Using calculations over GF (16), obtain ŝ = ĥ =
[1; 14; 5].

3. Using the ECLT, we find that i = 5, which corresponds to an error in the sixth symbol of
the information portion, and fi = 10.

4. We can now calculate ei = sjfi = 13 and the corresponding error vector e =
[0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. As can be seen in Fig. 3, in order to find
the corrected codeword, e must be subtracted from ĉ−1 and the result inverted once again.

y = ĉ−1 = [2, 5, 2, 14, 5,14, 9, 9, 10, 6, 1, 4, 1, 2, 14, 11, 0, 15, 12].

y− e = ĉ−1− e = [2, 5, 2, 14, 5,3, 9, 9, 10, 6, 1, 4, 1, 2, 14, 11, 0, 15, 12]. Once inverted, we do
in fact receive the predicted codeword c = [9, 11, 9, 3, 11,14, 2, 2, 12, 7, 1, 13, 1, 9, 3, 5, 0, 8, 10].

The updated syndrome is then s̃ = s − sjfihi = (3, 1, 15)T − 13 · (12, 4, 9)T = 0. We have
successfully corrected the single error; the flag “corrected” will be set to 1.

A sx+ex

w+ew

()‐1 w’
js

ĥ i

if

js

ECLT
× ie

+ ()‐1

Syndrome 
update corrected

+

Figure 3: Low-complexity single error correction architecture based on ECLT
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4 Detection and Correction Architecture for Rabii-Keren
Codes of Distance Larger Than 3

Small-scale natural faults or some precise faults injected by a sophisticated attacker manifest
themselves as a single erroneous symbol. However, there is an advantage in protecting the
system with a code of distance d > 3. A code of distance d > 3 allows the correction of a
single erroneous symbol (i.e., SBox output) and avoids a miscorrection of up to d− 2 erroneous
symbols.

In this section we show how the idea presented in the previous section can be generalized
to codes with d > 3. We show that instead of using a table with (q − 1)n entries each of size

(1 + (d− 2)m) log2 q︸ ︷︷ ︸
syndrome

+ log2(n)︸ ︷︷ ︸
error−location

+ log2 q︸ ︷︷ ︸
error−value

bits, one can use a table with n entries each of size (m+ 2) log2 q + log2(n).
Let us start with an example before the correctness of this statement is proven.

Example 2. Consider a (23, 216, 5)16 Rabii-Keren code for SBoxes with q = 16 and distance
d = 5. The check matrix of the code Horig,5 is the following:

Horig,5 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 11 5 9 3 1 5 0 13 7 3 3 8 11 6 11 4 6 15 13 3 10 6
0 7 11 2 2 1 3 4 3 9 4 10 7 2 12 4 7 0 1 15 12 12 6
1 5 3 5 13 3 8 6 4 15 3 6 0 1 10 15 15 7 8 9 8 5 9
0 11 2 3 3 4 7 12 7 1 12 6 11 3 9 12 11 0 4 14 9 9 15
1 9 5 7 8 11 15 10 0 10 15 11 8 7 5 9 1 1 9 5 7 8 11
0 2 3 9 7 4 1 12 11 11 12 1 4 7 9 3 2 0 2 3 9 7 4



← α0

← α1

← α2

← α3

The corresponding matrix A5 is

AT
5 =



1 12 0 15 0 14 13 6 15 12 3 9 15 10 0 15
11 12 12 3 15 8 8 2 5 2 2 15 10 13 10 3
5 2 12 10 3 12 4 5 4 12 13 9 9 14 13 12
10 4 2 0 10 5 7 13 9 5 1 8 5 1 14 1
7 8 4 9 0 6 0 6 6 11 12 11 3 6 1 5
15 15 8 14 9 5 1 4 12 14 9 2 1 15 6 11
12 0 15 0 14 13 6 15 12 3 9 15 10 0 15 14


It follows from the definition of the BCH code that the 3 × (k + 3) top left submatrix of

Horig,5 is identical to Horig,3, whereas A3 and A5 are different. Nevertheless, the first three
(1 +m) rows of A5 have the property that any two or less columns are linearly independent:

Theorem 1. The first (1 +m) symbols of the syndrome s, s[0:m] ∈ GF (q)m+1, uniquely define
the location of the erroneous symbol and its value.

Proof. To prove the theorem it is sufficient to show that, for the linear code, for any two errors
e1 and e2 of Hamming weight one, the corresponding partial syndromes s1,[0:m] and s2,[0:m] are
distinct.

Recall that the code is of distance d > 3, thus the syndromes s1 = (Ad|I)eT1 and s2 =
(Ad|I)eT2 ∈ GF (q)1+m(d−2) are distinct. Assume (by contradiction) that s1,[0:m] = s2,[0:m].
Then,

(Ad|I)(e1 − e2)T = (0m+1,∆s)
T
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Table 2: ECLT for RK code with parameters n = 23, k = 16, d = 5

ĥi i fi
1 11 5 0 1
1 1 7 1 10
0 1 1 2 10

1 11 15 3 8
0 1 11 4 8
1 11 7 5 3
1 6 3 6 4
1 14 8 7 7
1 14 6 8 8
1 7 1 9 10

ĥi i fi

1 15 10 10 14
1 13 1 11 2
1 15 4 12 8
1 3 4 13 12
0 1 3 14 12

1 11 10 15 8
1 0 0 16 1
0 1 0 17 1
0 0 1 18 1

where ∆s ∈ GF (q)m(d−3). Since e1, e2 consists of elements in GF (q), and GF (q) ⊂ GF (q)m,
the last equality can be written over GF (qm) as follows:

Horig,d(e1 − e2)T −Hr(02, ∆̃s)
T = 0

where ∆̃s is a vector of length d − 2 over GF (qm). In other words, we get that the sum of
at most 2 + (d − 3) columns of Horig,d are linearly dependent. This contradicts the fact that
Horig,d defines a code of distance d.

For example, the columns in first 1 +m = 3 rows of A5 are all distinct, moreover, one is not
a multiple of the other. Hence the location of a single erroneous nibble is uniquely defined by
ŝ[0:2]. Table 2 contains the location and error coefficient value for the correctable syndromes.
Note that use of Rabii-Keren code as a non-linear error correcting code would require a table
with 152 ·

(
23
2

)
+ 15 ·

(
23
1

)
= 57, 270 entries, each of 7 · 4 + 2(5 + 4)) = 46 bits (2,634,420 bits in

total). In contrast, the architecture presented in Fig. 3 requires a table with 23 entries each of
3 · 4 + (5 + 4) = 21 bits (483 bits in total).

The following example demonstrates the decoding technique for a (23, 264, 5)16 Rabii-Keren
code using the matrix A5 and the shortened ECLT as described above:

Example 3. Take the predicted word x = [5, 5, 0,2, 13, 12, 1, 2, 10, 12, 11, 13, 14, 13, 12, 4] and
the received word x̂ = [5, 5, 0,6, 13, 12, 1, 2, 10, 12, 11, 13, 14, 13, 12, 4].

Using Algorithm 2, we can detect and correct one error as follows:

1. After encoding x̂ using the RK code, the redundancy is w = [15, 14, 4, 11, 3, 13, 8] and the
syndrome is calculated as s = [5, 1, 6, 0, 7, 11, 0].

2. Normalize the first m+ 1 = 3 symbols of the syndrome where sj = 5. Using calculations

over GF (16), obtain ŝ = ĥ = [1; 11; 15].

3. Using the ECLT, we find that i = 3, which corresponds to an error in the fourth symbol
of the information portion, and fi = 8.

4. We can now calculate ei = sjfi = 14 and the corresponding error vector e =
[0, 0, 0, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].
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Again, e must be subtracted from ĉ−1 and the result must be inverted once again.

y = ĉ−1 = [11, 11, 0,7, 4, 10, 1, 9, 12, 10, 5, 4, 3, 4, 10, 13, 8, 3, 13, 5, 14, 4, 15].

y − e = ĉ−1 − e = [11, 11, 0,9, 4, 10, 1, 9, 12, 10, 5, 4, 3, 4, 10, 13, 8, 3, 13, 5, 14, 4, 15].
Once inverted, we do in fact receive the predicted codeword
c = [5, 5, 0,2, 13, 12, 1, 2, 10, 12, 11, 13, 14, 13, 12, 4, 15, 14, 4, 11, 3].

We have successfully corrected the single error.

5 Experimental Results

We consider error-detection and correction architectures for four block ciphers: small-scale
AES (with state consisting of 4×4 four-bit nibbles instead of bytes); regular AES; LED-64; and
PRESENT. The state of AES is organized in bytes and it incorporates 8-bit S-Boxes, whereas all
other considered ciphers have nibble-based states and 4-bit S-Boxes. We implemented distance-
3 and distance-5 Rabii-Keren (RK) codes over GF(16), that is, one symbol corresponding to
four bits. For all ciphers except AES, one symbol corresponds to one element. For AES, we
consider an architecture where each byte corresponds to two 4-bit symbols (32 symbols for
the complete 128-bit state); note that an error in a single byte may affect two (neighbouring)
symbols. A further architecture which overcomes this problem uses two decoders, one over 16
“upper” symbols, where each symbol stands for four most significant bits of a state byte and
one over 16 remaining “lower” symbols. On top of the RK code, we implemented a further
validation step using quadratic-sum (QS) code as the outer code. It is meant to identify
erroneous corrections, similar to the SECDED Hamming code [14]. Note that the QS code
alone does not have correction capability.

Table 3 summarizes the considered architectures. Its first 3 columns show the base circuit,
distance d of the RK code and whether one or two decoders are used (the latter only happens for
full-scale AES as the only byte-oriented cipher). The subsequent 4 columns show the number
of information and redundant data of the RK code, first expressed in the numbers of (4-bit)
symbols and then in bits. Note that the numbers for the two-decoder architecture are twice the
numbers for a single decoder. The check-bit for the QS code is not included in the table.

We ran fault-injection experiments on the mentioned architectures synthesized on Spartan-6
LX75 FPGA on Sakura-G board. We created a faster-than-nominal clock using the FPGA-level
digital clock manager and switched to that clock during a specific cycle of encryption. This
resulted in a wide distribution of errors of different multiplicity and is a good model of a
malicious attack using a rather imprecise equipment. For each architecture, we collected and
characterized 1,000,000 fault events, where a fault event is one encryption with a specific input
(plaintext) whose output (ciphertext) deviated from the fault-free value. We deliberately avoid
using the term “fault” or “error” to avoid confusion with scenarios when multiple inputs are
used and a fault detected by one of the inputs is counted as detected. This view is appropriate
for permanent faults, but fault events considered here are transient.

Each of the fault events is attributed to the following categories. The distribution of the
1,000,000 fault events to four classes C1 – C4 is shown in the next four columns of Table 3.

Class C1: Undetected by the RK code. Faults which were undetected, i.e., resulted in
the all-zero syndrome. For a code with distance d, this can only happen for errors of
multiplicity d (or multiples of it).

Class C2: Single errors. Faults which affected only one symbol and could be corrected to the
original codeword. Note that our experiment set-up keeps the fault-unaffected ciphertext
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Table 3: Experimental results on error detection & correction
Architecture Symbols Bits Fault events

Circuit d #Dec kq rk k r Non-linear checker System-level fault manager
Class C1 Class C2 Class C3 Class C4 Class S1 Class S2
Undetected Single errors Recognized as Erroneous Recognized as Unrecognised

by the (corrected by suspicious corrections erroneous by as erroneous by

RK code RK code) (by RK code) by RK code QS outer code QS outer code

Small-sc. 3 1 16 3 64 12 179 59337 874101 66383 62499 (93.9%) 4063 (6.1%)
AES 5 1 16 7 64 28 0 59337 940662 1 1 (100%) 0 (0%)
AES 3 1 32 3 128 12 239 33 867272 132456 124286 (93.7%) 8409 (6.3%)

3 2 32 6 128 24 67 33 881006 118894 117475 (98.8%) 1486 (1.2%)
5 2 32 14 128 56 0 33 999956 11 11 (100%) 0 (0%)

LED-64 3 1 16 3 64 12 234 15 926682 73069 68734 (93.8%) 4569 (6.2%)
5 1 16 7 64 28 0 15 999985 0 0 0

PRESENT 3 1 16 3 64 12 229 0 927018 72753 68376 (93.7%) 4606 (6.3%)
5 1 16 7 64 28 0 0 1000000 0 0 0

for reference and therefore can attribute the fault precisely; an actual device under attack
would not know the multiplicity of the injected attack.

Class C3: Recognized as suspicious. Faults which resulted in multi-symbol errors and
where the correction procedure stopped since it did not find a fitting entry in the ECLT.

Class C4: Erroneous correction. Faults which were corrected but into a different codeword
than the original one. This can happen if, e.g., for distance-3 code, an error of multiplicity
2 transforms a codeword into a non-codeword with distance 1 to a different codeword.

Fault events from classes C1 and C4 are potentially critical, as they are associated with errors
not properly handled by the RK code. In our architecture, the system-level fault manager
based on the QS outer code performs a further validation. Note that the fault events from class
C2 are valid corrections which need no further handling, and fault events from class C3 are
already recognized as erroneous before the system-level fault manager has been invoked. The
fault events from the classes C1 and C4 are subdivided into classes S1 and S2 based on the
outcome of this validation:

Class S1: Recognized by QS outer code. Seemingly successful but erroneous corrections
which created an inconsistency when recalculating the outer code.

Class S2: Unrecognized by QS outer code. Seemingly successful but erroneous correc-
tions not noticed by the system.

The final two columns of Table 3 present the fault events from these new classes. Note that
they sum up to the sum of classes C1 and C4, and that the percentages relate to this sum. For
example, the number of fault events for the distance-3 architecture for small-scale AES that
need system-level handling is 179 (C1) + 66,383 (C4) = 66,562; out of these, 62,499 or 93.9%
are detected by the QS outer code (S1) and the remaining 4,063 or 6.1% are not (S2). Fig. 4
visualizes the four classes C1–C4 and their relationship to system-level classes S1 and S2.

From Table 3, it can be seen that the vast majority of fault events in potentially critical
classes C1 and C4 are handled successfully on the system level and are included in class S1. If
distance-3 codes are used, less than 1% of fault events go undetected (class S2), the maximum
being 8,409 out of 1,000,000 total fault events for the single-decoder AES architecture. However,
these cases never occur for distance-5 codes.

Even for distance-3 codes, one can assume that, prior to an unnoticed fault, the adversary
will have to inject a large number of detected faults, such that the circuit can go into state of
alert and, e.g., replace the secret key. The rather low number of successful corrections (single
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Figure 4: Classification of fault event effects at code and at system level

errors in Table 3) is just the number of single-symbol errors in the fault injection experiment.
The code guarantees that every single error that shows up will be successfully corrected; this
also eliminates the threat of precise single-nibble or single-byte fault injections [26, 8]. The
majority of uncorrectable faults are reliably recognized by either the RK code directly or by
the outer code. For distance-5 code, the number of erroneous corrections is extremely small
(between 0 and 11 out of 1,000,000), and all of them are identified by the outer code.

From the application point of view, the results indicate the suitability of RK-based archi-
tectures for mixed detection-correction architectures. In particular, using a code with some
“reserves” in terms of detection capability (here: distance-5 code) results in no undetected
fault events and no unrecognized erroneous corrections. This means that the architecture can
correct low-magnitude disturbances, i.e., single-symbol errors, without much risk of missing
attempted attacks. Note that faults are injected into the circuitry, whereas errors are defined
on the outputs of the circuit (or of its protected part). Therefore, timing-based fault injec-
tions used here can result in errors of different multiplicity, determined by two factors. First,
the manipulated (faster-than-nominal) clock runs in parallel through the entire fault-injection
campaign, resulting in different and unpredictable deviations between the nominal and the
manipulated clock which accumulate over time. When the clock is switched from nominal to
manipulated, the next clock edge can occur very quickly, resulting in a large number of failing
paths within the circuit and therefore high-multiplicity errors on outputs, or it can happen only
slightly before the regular clock edge, such that only one critical path to a circuit output fails.
Second, the fault effect propagates through the (unmanipulated) rounds of the cipher after the
fault injection, and the diffusion property of the cipher can lead to a higher multiplicity of the
error on the circuit’s outputs.

Table 4 shows a comparison of the size of our architecture, a purely linear BCH architec-
ture and a triple modular redundant (TMR) architecture code in numbers of needed FPGA
configurable logic blocks (CLB). It can be noticed that the robustness, and thus the increase
in security, of the RK architecture comes at a low cost compared to the linear (and therefore
non-robust) BCH implementation (which also used the ECLT-based approach). The highest
increase due to inversions introduced by the RK code is 24% increase; in one case there is even
a small decrease due to optimizations during FPGA synthesis. The cost of our architectures
exceeds TMR for small basic ciphers, as some required circuitry is cipher-independent. Note,
however, that TMR can be interpreted as repetition code and is not robust (the attacker can
simply apply the same error to all copies), and therefore its security is inherently worse com-
pared with a robust RK code. In the case of the AES, the number of CLBs are similar which
further encourage the use of our architecture.

While the detection and correction performance of the architecture is extremely attractive,
the hardware cost of the solution based on advanced non-linear codes is a major limiting factor.
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Table 4: Size comparison in numbers of configurable logic blocks (CLBs)
Cipher Unprot. round RK (d = 3) BCH (d = 3) RK (d = 5) BCH (d = 5) TMR
Small-scale AES 37 202 169 328 267 108
AES (1 decoder) 173 388 392 – – 421
AES (2 decoders) 173 465 419 572 462 421
LED-64 39 221 213 257 248 133
PRESENT 23 165 148 240 243 57

For this reason, the ECLT-based approach presented here is an important step towards making
these architectures practical. Finally, it is important to note that the used q-ary codes demand
more complex operations (multiplications and the inversions) than binary codes. However, it
turns out that binary codes with comparable detection and correction properties need consid-
erably more redundancy bits. For example, our distance-5 code over GF(16) requires r = 56
redundancy bits for k = 128 data bits, whereas a binary BCH code with the same correction
capability (d ≥ 2 · 8 + 1) necessitates r = 112 redundancy bits for the same k. Moreover,
the decoding is more complex since the ECLT technique from this paper is not applicable and
the Berlekamp-Massey algorithm must be used instead. Note that this algorithm cannot be
performed in a single cycle, so our higher expenditures in hardware complexity are offset by
execution time savings.

6 Conclusions

The precision of physical attacks is steadily improving, giving a strategic attacker the potential
to overcome detection strategies based on duplication, modular redundancy, or conventional
(linear) error-detecting codes. We presented an architecture based on security-oriented non-
linear codes which can detect and correct errors due to natural and malicious causes. The
architecture is based on previously introduced Rabii-Keren codes and discusses the associated
encoding, decoding, and error correction algorithms. In particular, we proposed an improved
technique for detecting single errors using the Error Coefficient and Location Table (ECLT),
which reduces the correction effort by several orders of magnitude and makes this approach
feasible for practical use. Experimental results using a physical fault injector on an FPGA
show, for several cryptographic circuits, that the architecture can reliably detect and correct
faults of arbitrary multiplicity, recognizing erroneous corrections.
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