
EasyChair Preprint
№ 2821

Minimal Perturbation in University Timetabling
with Maximum Satisfiability

Alexandre Lemos, Pedro T. Monteiro and Inês Lynce

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 29, 2020

Minimal Perturbation in University Timetabling
with Maximum Satisfiability?

Alexandre Lemos[0000−0002−3876−1011], Pedro T. Monteiro[0000−0002−7934−5495],
and Inês Lynce[0000−0003−4868−415X]

Instituto Superior Técnico, Universidade de Lisboa
INESC-ID, Rua Alves Redol 9, 1000-029 Lisboa, Portugal

{alexandre.lemos,pedro.tiago.monteiro,ines.lynce}@tecnico.ulisboa.pt

Abstract. Every new academic year, scheduling new timetables due to
disruptions is a major problem for universities. However, computing a
new timetable from scratch may be unnecessarily expensive. Further-
more, this process may produce a significantly different timetable which
in many cases is undesirable for all parties involved. For this reason, we
aim to find a new feasible timetable while minimizing the number of
perturbations relative to the original disrupted timetable.
The contribution of this paper is a maximum satisfiability (MaxSAT)
encoding to solve large and complex university timetabling problem in-
stances which can be subject to disruptions. To validate the MaxSAT
encoding, we evaluate university timetabling real-world instances from
the International Timetabling Competition (ITC) 2019. We consider the
originally found solutions as a starting point, to evaluate the capacity
of the proposed MaxSAT encoding to find a new solution with minimal
perturbation. Overall, our model is able to efficiently solve the disrupted
instances.

Keywords: MaxSAT · University Course Timetabling · Minimal Per-
turbation

1 Introduction

Many real-life problems can be encoded as constraint optimization problems,
being university timetabling problems a concrete example. Solving optimization
problems is by itself a hard and complex computational task. When solving
these problems, unexpected disruptions may cause the original solution to be
no longer feasible. Therefore, one needs to solve the problem again subject to
these unexpected disruptions. Universities, and in particular their timetables,
are dynamical systems. Hence, it is natural that one often needs to solve new

? The authors would like to thank the reviewers for their helpful comments and sug-
gestions that contributed to an improved manuscript. This work was supported
by national funds through Fundação para a Ciência e a Tecnologia (FCT) with
reference SFRH/BD/143212/2019 (PhD grant), DSAIPA/AI/0033/2019 (project
LAIfeBlood) and UIDB/50021/2020 (INESC-ID multi-annual funding).

2 A. Lemos et al.

timetables subject to disruptions. These types of real-world scenarios are still a
significant research line [1,2].

The contribution of this paper is a MaxSAT encoding to solve university
course timetabling problems which can be subject to different disruptions. We
showcase the application of the MaxSAT encoding with the large data sets from
the ITC-2019 benchmark[3]. Furthermore, these instances are subject to the
most common disruptions in the literature.

This paper is organized as follows. Section 2 provides a concise background
on university timetabling and minimal perturbation problems. Section 3 formally
describes the problem of minimal perturbation in university timetabling and the
MaxSAT encoding. Section 4 discusses the main computational results. Finally,
Section 5 concludes the paper and discusses possible future directions.

2 Background

In this section, we provide an overview of university timetabling, followed by the
background on the minimum perturbation problem and the MaxSAT problem.

2.1 University Timetabling

University timetabling problems [1,2] can be categorized as follows: examination
timetabling [4], course timetabling [5] and student sectioning [6]. These problems
are known to be NP-complete [7].

Examination timetabling is the problem of assigning exams to rooms subject
to a set of constraints. Course timetabling can be informally defined as the
problem of finding a feasible assignment for all the classes of all courses to a
time slot and a room, subject to a set of constraints. Student sectioning is the
problem of sectioning students, subject to capacity and schedule constraints, to
all the classes required by the courses they are enrolled in. In the context of this
paper, we only consider course timetabling and student sectioning problems. A
formal and detailed description of both problems is given in Section 3.

In recent years, a significant improvement in solving university timetabling
problems has been achieved [1,2]. In the literature, one can find distinct ap-
proaches to solve university timetabling problems, most notably: Constraint Pro-
gramming (CP)[8,9], Answer Set Programming (ASP) [10], Boolean Satisfiability
(SAT) [11], Maximum Satisfiability (MaxSAT) [12], Integer Linear Programming
(ILP) [13,14,15] and local search [13,16].

The availability of benchmark data sets from previous competitions [5], based
on data from Udine University, motivated the development of the above men-
tioned methods. However, a gap between theory and practice [1,3] still persists,
given that the benchmark does not express the whole complexity and size of the
worldwide university timetabling problem. Recently, to further reduce this gap,
a new benchmark was made available as part of ITC-2019 [3].

Minimal Perturbation in University Timetabling with MaxSAT 3

2.2 Minimal Perturbation Problem

Consider a given problem, subject to a set of constraints, for which s is a feasible
solution. A set of disruptions may imply a change in the set of constraints and/or
a change in the set of variables of the problem. The disruptions cause the solution
s to be no longer feasible.

This optimization problem can be described as a Minimal Perturbation Prob-
lem (MPP) [8,10,14,17,15] where the goal is to minimize the number of pertur-
bations caused to s in order to find a new feasible solution. In this paper, we
consider the MPP as a multi-objective optimization problem where we use the
Hamming distance (HD) and the overall quality as the optimization criterion.
This makes MPP cardinality minimal and so more restricted than subset min-
imal. The problem of finding similar/diverse solutions [18] has similarities to
MPP. However, the task of finding similar/diverse solutions usually does not
consider an infeasible solution as a starting point.

Example 1. Let us consider a course timetabling problem instance with two
classes (ci and cj) that can be assigned to five different time slots denoted as
t1 . . . t5. Time slots t3 . . . t5 have a penalty associated with both classes. Classes
c1 and c2 have a no overlap constraint, to ensure that they are assigned to dif-
ferent time slots. Also, let us assume that the original solution s is optimal and
consists in the assignment of ci to the time slot t1 and cj to t2. Now, if a disrup-
tion causes t1 to be unavailable to class ci, then solution s becomes infeasible,
and needs to be modified. If one solves the problem instance from scratch, the
optimal solution is the assignment of ci to time slot t2 and cj to t1, corresponding
to a different solution. The solution with the smallest number of perturbations
only implies changing ci to time slot t2 despite the fact that it causes a loss in
the overall quality of the timetable.

The application of MPP to course timetabling has been studied in the liter-
ature [8,10,14,15]. The most common approach to measure the perturbations is
to apply the HD [19].

Müller et al. [8] proposed the iterative forward search algorithm, a local
search method that does not ensure completeness. Phillips et al. [15] proposed a
neighborhood based integer programming algorithm to solve MPP in instances
from the University of Auckland. In the worst case, the neighborhood will include
the whole search space.

Recently, two different tools have been proposed to compute the Pareto front
using ASP [10] and ILP [14]. The Pareto front is computed based on two objec-
tives: (i) the minimization of the cost of unsatisfied soft constraints; and (ii) the
minimization of the number of perturbations.

Another approach is to create a robust solution in order to resist predictable
disruptions [16]. However, this approach will not be discussed in this paper.

2.3 MaxSAT

A literal l, is either a Boolean variable x (positive literal) or its negation ¬x
(negative literal). A clause is a disjunction of literals. A propositional formula

4 A. Lemos et al.

in Conjunctive Normal Form (CNF) is a conjunction of clauses. SAT is the
problem of deciding whether a given formula has an assignment that satisfies all
the clauses in the formula.

The MaxSAT problem is a generalization of SAT, where the objective is to
find an assignment that maximizes the number of satisfied clauses. A weighted
partial MaxSAT formula (ϕ = ϕh∪ϕs) consists of hard clauses (ϕh), soft clauses
(ϕs), and a function wϕ : ϕs → N associating an integer cost to each soft clause.
The goal in weighted partial MaxSAT is to find an assignment such that all
hard clauses in ϕh are satisfied, while maximizing the weight of the satisfied soft
clauses in ϕs.

In this paper, we will assume that all propositional formulas are in CNF.
However, to simplify the writing of some constraints, we will use the defi-
nition of pseudo-Boolean (PB) constraints. PB constraints are commonly ap-
plied in pseudo-Boolean optimization [20], a related problem to weighted partial
MaxSAT. PB constraints are linear constraints over Boolean variables, and can
be generally written as follows:

∑
qixi op K, where K and all qi are integer

constants, all xi are Boolean variables, and op ∈ {<,≤,=,≥, >}. This type of
constraints can be translated into SAT [21].

3 MaxSAT encoding

In this section, we formally describe the university course timetabling problem [3]
and its MaxSAT encoding. Consider a set of consecutive time slots of five minutes
T ∈ {1, ..., 288} corresponding to all possible time slots of a day and a set of
sets of weekdays D ∈ {0000000, . . . , 1111111}. Each subset of days Days ∈ D
has |Days| = 7. Daysd corresponds to a particular weekday with 0 < d ≤ |Days|
(Days1 corresponds to Monday, Days2 to Tuesday, and so on). A set of sets of
weeks of a semester is represented by W. Each subset of weeks Weeks ∈ W has
|Weeks| = 16. Weeksw corresponds to week w with 0 < w ≤ |Weeks|. A time
period p is represented with a 4-tuple (Wp, Dp, hp, lenp): a set of weeks (Wp ⊆
W); a set of days (Dp ⊆ D); an hour (hp ∈ T); and its duration (lenp > 1).

Consider a set of courses Co. A course (co ∈ Co) is composed by a set of
classes Cco. These classes are characterized by configurations (Configco) and
organized in parts (Partsconfig). A student must attend the classes from a single
configuration. A student enrolled in the course co and attending the configuration
config ∈ Configco must attend exactly-one class from each part Partsconfig . The
set of classes belonging to part ∈ Partsconfig is represented by Cpart .

The university has a set R of rooms where the classes of a course can be
scheduled. The travel time, in slots, between two rooms r1 ∈ R and r2 ∈ R is
represented as travelr1r2 . Each room r ∈ R has a set of unavailable periods Pr.

All university classes C (from different courses) must have a schedule assigned
to them. Each class c ∈ C has a set of possible periods (Pc) to be scheduled in.
Each possible period p ∈ Pc has an associated penalty. Furthermore, a class
may need to be assigned to a room. A class has a hard limit on the number
of students that can attend it (limc). A class may have a set of possible rooms

Minimal Perturbation in University Timetabling with MaxSAT 5

(Rc). Each room r ∈ Rc has capacity ≥ limc and an associated penalty. Each
class may also have parent-child relation with another class. The parent of class
c is represented by parentc.

The university has a set of students S. Each student s ∈ S is enrolled in a set
of courses Cos . To reduce the number of similar variables and constraints, we
create groups of students sharing the same curricular plan [22]. Furthermore, we
limit the size of the group to the value of the greatest common divisor between
the total number of students enrolled in a course and the smallest capacity limit
of the classes of that course [23]. This process ensures that it is possible to find a
feasible solution to a problem instance, since it is possible to combine all groups
of students into classes. However, we may remove the optimal solution by not
allowing the assignment of a single student to a given class. For this reason, we
define Cluster as a set of clusters of students. The number of students merged
in the id ∈ Cluster is represented by |id |.

There are four optimization criteria: (i) the cost of assigning a class to a
room; (ii) the cost of assigning a class to a time slot; (iii) the number of student
conflicts and (iv) a set of soft constraints. Each criterion has its weights. We
solve university course timetabling in two sequential MaxSAT runs. First, we
solve the course timetabling problem and then we solve the student sectioning
problem. The sequential runs may result in the loss of the global optimum (i.e.
it may remove the optimal solution in terms of student conflicts). Nevertheless,
it produces a solution within the Pareto front if given enough time and memory
resources. Moreover, it reduces the size of the global problem. Furthermore,
allows us to tackle the MPP using only the first MaxSAT model.

3.1 Course timetabling

Our course timetabling encoding has four types of Boolean decision variables:

– w
Weekp
c represents the assignment of class c to the set of weeks Weekp ,

with c ∈ C, Weekp ∈ W and p ∈ Pc;
– d

Dayp
c represents the assignment of class c to the set of days Dayp,

with c ∈ C, Dayp ∈ D and p ∈ Pc;
– h

hourp
c represents the assignment of class c to the hour hourp,

with c ∈ C and p ∈ Pc;
– rroomc represents the assignment of class c to the room room,

with c ∈ C and room ∈ Rc.

The scheduling possibilities of a class are usually just a small part of the
complete set of possible combinations of weeks, days and hours. Consequently,
we only define these variables for acceptable values of the class domain reducing
the size of the problem. Furthermore, using four variables instead of one provides
a more flexible approach when writing the associated constraints, reducing the
size of the encoding. For example, one can write the constraints using only related
variables (e.g. SameDay constraint uses only variable d).

6 A. Lemos et al.

To simplify the writing of the exactly-one constraints (
∑
· = 1) we define

the auxiliary variable t, where tslotc represents the assignment of class c to the
allocation slot slot ∈ [0, . . . , |Pc|].

Our encoding has the following constraints. If a class c takes place in the hour
hour then all allocation slots including hour are assigned. If we consider that n
allocation slots have the same hour, then the following equivalence is needed:

hhourc ⇐⇒
∧
n

tslotnc . (1)

This equivalence can be easily converted to SAT. Similarly, the same type of
equivalence has to be written between the week/day variables and the t variables.

A class can only be taught in exactly one allocation slot. For each class c ∈ C:∑
slot∈[0,...,|Pc|]

tslotc = 1. (2)

A class with Rc 6= ∅ can only be taught in exactly one room. For each c ∈ C:∑
room∈Rc

rroomc = 1. (3)

We define the auxiliary variable sdcicj to represent two classes taught in the
same day (i.e. with at least one day overlap). For each two classes ci, cj with
i 6= j, where Day0 to Dayn belong to the domain of class ci, Dayn+1 to Daym
belong to the domain of class cj , with 0 < n < m, and they overlap we add:

sdcicj ⇐⇒ (dDay0ci ∨ . . . ∨ dDaynci) ∧ (dDayn+1
cj ∨ . . . ∨ dDaymcj). (4)

Similarly, one can define an auxiliary variable swcicj to represent two classes
overlapping in at least one week.

A class c with Rc 6= ∅ must be taught in a room not assigned to another
class in the specific time slot. For each two classes ci, cj , where room ∈ Rci ,
room ∈ Rcj , hourpi + lenpi > hourpj and hourpj + lenpj > hourpi with pi ∈ Pci
and pj ∈ Pcj , we add clause:

¬sdcicj ∨ ¬sw
ci
cj ∨ ¬h

hourpi
ci ∨ ¬h

hourpj
cj ∨ ¬rroomci ∨ ¬rroomcj . (5)

The clause above could have a smaller number of literals if we used the
auxiliary variable t. However, it would require to generate more constraints.
This trade-off was tested and fewer constraints proved to be more efficient.

The rooms may have unavailability time slots, where no class can be taught.
To enforce this constraint we add the following clause for each class c, room r
and unavailable period p:

¬rrc ∨ ¬tpc . (6)

The next set of constraints can be hard or soft. These constraints involve
always a pair of classes. In case of being soft, the penalty associated with each

Minimal Perturbation in University Timetabling with MaxSAT 7

constraint incurs for every pair of classes. Consider two classes ci and cj with
i 6= j and two time slots pi ∈ Pci and pj ∈ Pcj .

SameStart : The classes have to start at the same time. For each pair hourpi ,
hourpj where hourpi 6= hourpj we add a clause:

¬hhourpici ∨ ¬h
hourpj
cj . (7)

DifferentTime (SameTime): The classes must be taught at a (the) different
(same) hour. For each pair hourpi , hourpj with (no) overlap in time, we add (7).

WorkDay(V): There must not be more than V time slots between the start
time of the first class and the end time of the last class on any day. For each
pair hourpi , hourpj where hourpi + lenpi − hourpj ≥ V, we add clause (7).

DifferentDays (SameDays): The classes must be taught in different days
(the same subset of days). For each pair Daypi , Daypj where Daypi ∧Daypj = ∅
(Daypi ⊆ Daypj), we add a clause:

¬dDaypici ∨ ¬d
Daypj
cj . (8)

DifferentWeeks (SameWeeks): The classes must be taught in different
weeks (the same subset of weeks). For each pair Weekpi

, Weekpj
where

Weekpi
∧Weekpj

= ∅ (Weekpi
⊆Weekpj

), we add a clause:

¬w
Weekpi
ci ∨ ¬w

Weekpj
cj . (9)

DifferentRoom (SameRoom): The classes must be taught in different rooms
(the same room). For each pair roomi ∈ Rci , roomj ∈ Rcj where roomi = roomj

(roomi 6= roomj), we add a clause:

¬rroomi
ci ∨ ¬rroomj

cj . (10)

SameAttendees: The classes cannot overlap in time, days and weeks. Fur-
thermore, the attendees must have sufficient time to travel between the rooms
corresponding to consecutive classes. For each pair of hours hourpi , hourpj and
rooms roomi, roomj where and hourpi + lenpi + travelroomi

roomj
> hourpj , we add:

¬sdcicj ∨ ¬sw
ci
cj ∨ ¬h

hourpi
ci ∨ ¬h

hourpj
cj ∨ ¬rroomi

ci ∨ ¬rroomj
cj . (11)

Overlap (NotOverlap): The classes must (not) overlap in time, day and week.
For each pair pi, pj with (no) overlaps in time, we add a clause:

¬tpici ∨ ¬t
pj
cj . (12)

Precedence: The first meeting of a class in a week must be before the first
meeting of another class. For each pair pi, pj where pj preceeds pi, we add (12).

MinGap(V): The classes that are taught on the same day and on the same
set of weeks must be at least V slots apart. For each pair pi, pj that is taught
in the same week, day and hourpi + lenpi + V ≥ hourpj , we add (12).

8 A. Lemos et al.

The next set of constraints involve a set of classes. In these cases, the penalty
depends on the distance between the solution and the unsatisfied constraint.

MaxDays(V): The classes cannot be taught in more than V different days.
When the constraint is soft, the penalty is multiplied by the number of days that
exceed V. For this reason, we define an auxiliary variable dayofweekconst

d , where
const is the identifier of the constraint MaxDays and d ∈ {1 , . . . , |Days|}. This
variable corresponds to having at least one class, of this constraint, assigned to
weekday d. Consider Dayp1 , . . . , Daypn , Daypn+1

, . . . , Daypm where p1, . . . , pn ∈
Pci , pn+1, . . . , pm ∈ Pcj and Dayd1 = 1, . . . , Daydm = 1 we add:

dayofweekconst
d ⇐⇒ d

Dayp1
ci ∨ . . . ∨ d

Daypn
ci ∨ d

Daypn+1
cj ∨ . . . ∨ d

Daypm
cj . (13)

Now, we only need to ensure that:∑
c∈C

∑
p∈Pc

∑
d∈[1,...,|Dayp|]

dayofweekconst
d ≤ V . (14)

MaxDayLoad(V): The classes must (should, if the constraint is soft) be spread
over the days in a way that there is no more than a given number of occupied
V time slots on each day. When the constraint is soft, the penalty is multiplied
by the division of the sum of the number of slots that exceed V for each day by
the number of weeks. Hence, we only need to ensure that:

7∑
d=1

∑
c∈C

∑
p∈Pc,

Daydp=1

dDaypc × lenp ≤ V. (15)

MaxBreaks(V1,V2): There are at most V1 breaks throughout a day between
a set of classes in this constraint. A break between two classes is a gap larger
than V2 time slots. When the constraint is soft, the penalty is multiplied by the
number of new breaks. For every class c1 to cn assigned to a period (p1 ∈ Pc1
to pn ∈ Pcn) in such a way that it forms a block of classes that breaks this
constraint, we add the clause:

¬tp1c1 ∨ . . . ∨ ¬t
pn
cn . (16)

MaxBlock(V1,V2): There are at most V1 consecutive slots throughout a day
between a set of classes in this constraint. Two classes are considered to be con-
secutive if the gap between them is less than V2 time slots. When the constraint
is soft, the penalty is multiplied by the number of new blocks of classes. For
every class c1 to cn assigned to a period (p1 ∈ Pc1 to pn ∈ Pcn) in such a way
that it forms a block of classes that breaks this constraint, we add (16).

3.2 Student Sectioning

To solve student sectioning our encoding is extended with one decision variable
scid, where c ∈ C and id ∈ [1, . . . , |Cluster|]. To ensure a student can only be

Minimal Perturbation in University Timetabling with MaxSAT 9

sectioned to a single course configuration, we define an auxiliary variable for
each pair configuration-cluster of students. The variable is denoted as conf config

id ,
where id ∈ [1, . . . , |Cluster|], config ∈ Configco and co ∈ Co.

Each cluster of students id must be enrolled in exactly-one configuration of
each course, co ∈ Cos , and thus we add the clause:∑

config∈Configco

conf config
id = 1 . (17)

To ensure that the class capacity is not exceed, we add for each class c:∑
id∈[1,...,|Cluster|]

|id| × scid ≤ limc. (18)

A cluster of students id enrolled in a class c must be enrolled in class parentc:

¬scid ∨ s
parentc
id . (19)

Finally, we need to ensure that a cluster of students id is enrolled in exactly-
one class of each part of a single configuration of the course co. Therefore, for
each cluster of student id and for each pair of two classes ci, cj in the same
ci , cj ∈ Cpart where part ∈ Partsconfig , we add:

¬conf config
id ∨ ¬sci

id ∨ ¬s
cj

id . (20)

For each cluster of students and for each part ∈ Partsconfig we add:

¬conf config
id ∨ sci

id ∨ . . . ∨ s
c|Cpart |

id . (21)

The conflicting schedule of classes attended by the same cluster of students
is represented by a set of weighted soft clauses. For each cluster of students id
enrolled in two classes ci, cj with overlapping time:

¬sciid ∨ ¬s
cj
id ∨ ¬sw

ci
cj ∨ ¬sd

ci
cj ∨ ¬h

hourci
ci ∨ ¬h

hourcj
cj . (22)

3.3 Disruptions

In this work we consider the following disruptions: invalid time and invalid room.
These disruptions reduce the domain of a specific class c in terms of available
time slots or rooms. Disruptions in the students enrollments would only cause
changes in the student sectioning part. The problem definition has the underlin-
ing assumption that all the rooms in the domain of class have enough capacity
for the students attending. As our original solutions are sub-optimal we do not
consider disruptions in the enrollments.

Invalid Time: The time slot t is no longer available for class c:

¬ttc. (23)

10 A. Lemos et al.

Course
Timetabling

MaxSAT
new timetable

Disruptions
GenerationPre-processing

problem
instance original

timetable

Fig. 1: Algorithm schema to solve university timetabling problems subject to
disruptions.

Invalid Room: The room r is no longer available for class c:

¬rrc . (24)

When recovering from disruptions we apply lexicographic optimization with
two criteria: (i) the HD and (ii) the overall quality of the solution (computed
based on the four criteria defined above). This way we can take advantage of the
disruption to improve the quality of the solution.

4 Experimental Evaluation

In this section, we discuss the main computational results obtained. First, we
describe the setup used to validate our approach. Next, we discuss our results
for both university timetabling problems and MPP.

4.1 Experimental setup

The evaluation was performed using the runsolver tool [24] with a time out
of 6,000 seconds. Runsolver was run on a computer with Fedora 14, with 32
CPUs at 2.6 GHz and 126 Gb of RAM. To validate our approach, we used the
benchmark obtained from ITC-2019 [3], which is divided into three groups (early,
middle, late). The goal of the competition was to find the best solution for these
instances with no time or memory limits. The organizers provided an validation
tool1, which we used to validate the correctness of our approach.

The proposed solution was implemented in C++, using the TT-Open-WBO-
Inc [25,26]2 MaxSAT solver. The solver was configured to use linear search with
the clusters algorithm [27]. Moreover, a lexicographic optimization criterion [28]
was used. Exactly-one constraints were encoded into CNF through the ladder en-
coding [29]. PB constraints were encoded to CNF using the adder encoding [30].
Our implementation is available at github.com/ADDALemos/MPPTimetables3.

Table 1 shows the different characteristics of the instances. One can see that
the instances are distinct from each other. Instances from iku* are the largest
in terms of classes. However, they do not have students or MaxBlock/MaxBreak.

1 https://www.itc2019.org/validator
2 TT-Open-WBO-Inc won the Weighted Incomplete category at MaxSAT Evaluation
2019. The results are available at https://maxsat-evaluations.github.io/2019.

3 We use the RAPIDXML parser which is available at rapidxml.sourceforge.net/

https://github.com/ADDALemos/MPPTimetables
https://www.itc2019.org/validator
https://maxsat-evaluations.github.io/2019
http://rapidxml.sourceforge.net/

Minimal Perturbation in University Timetabling with MaxSAT 11

Table 1: Data sets per university (instances sorted by # of variables).

|C| Avg. Avg. |S| (k) #MaxBreak #MaxBlock # Var. (k)|Rc| |Pc|
yach-fal17 417 4 43 1 0 0 19

nbi-spr18 782 4 38 2 0 0 35

tg*
Avg. 693 11 24 0 0 0 42

Median 693 11 24 0 0 0 42

mun-f*
Avg. 743 4 44 1 0 3 45

Med. 700 4 30 1 0 2.5 38

mary*
Avg. 916 14 12 4 0 0 47

Med. 916 14 12 4 0 0 47

lums*
Avg. 494 26 43 0 0 0 82

Med. 494 26 43 0 0 0 82

bet*
Avg. 1,033 25 23 3 24 19 140

Med. 1,033 25 23 3 24 19 140

pu*
Avg. 3,418 12 33 28 16 0 196

Med. 1,929 12 30 31 17 0 125

muni-pdf*
Avg. 2,586 15 53 4 0 13 374

Med. 2,526 17 56 3 0 10 373

agh*
Avg. 1,955 34 89 3 15 0 380

Med. 1,239 10 75 2 14 0 340

iku*
Avg. 2,711 25 34 0 0 0 1,050

Med. 2,711 25 34 0 0 0 1,050

They have one order of magnitude more variables than the next largest instance
(despite not having students). The muni-f* instances have a particular small
search space in terms of possible rooms per class (only 4).

Figure 1 illustrates the process of solving the university timetabling prob-
lem subject to disruptions. The process starts with a problem instance and a
timetable, and ends when a new feasible timetable is found. Each problem in-
stance is pre-processed before generating the encoding. Our approach relies on
two pre-processing methods: (i) identification of independent sub-sets in terms
of courses; and (ii) merging students with exactly the same course enrollment
plan. Method (i) divides the problem into self-contained sub-problems, while
not removing any solution. Method (ii) was already discussed before (Section 3)
and it may remove the optimal solution by not allowing the assignment of an
individual student to a given class.

For each instance, we generated 50 different disruption instances. As our
space is limited, we only show the results for the disruptions that are more likely
to occur [14,15]. The disruptions were randomly generated following a uniform
distribution with a probability of 21% and 25% for invalid time and invalid room,
respectively. These percentages represent the probability of an assignment being
invalid. These values were obtained by the academic office of our university, and
applied to the ITC-2019 benchmark instances.

12 A. Lemos et al.

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1x10
10

 1x10
11

 0 1000 2000 3000 4000 5000 6000

#
 H
a
rd

 C
o
n
s
t.

Time best cost (s)

(a)

 0

 10
00

 20
00

 30
00

 40
00

 50
00

ag
h*

lum
s*

ma
ry*

mu
ni-
f*

mu
ni-
pd
f*

nb
i-s
pr
18 pu tg*

ya
ch
-fa
l17

T
im
e

 (
s
)

Original
Invalid Time
Invalid Room

(b)

Fig. 2: (a) A comparison of the number of hard constraints versus CPU time, in
seconds (log scale), for each instance. The dotted line represents the time limit.
(b) A comparison of the CPU time per disruption scenario and university.

4.2 Computational results

First, we discuss the results for the university course timetabling without sub-
jecting it to disruptions. Next, we discuss the results for the MPP.

University Course Timetabling The success of our approach is attested by
having been ranked among the five finalists of the ITC-2019 competition. The
creation of clusters has a significant impact on the number of variables. On
average, one can reduce the number of variables relating to students up to 15%.

We are able to find a solution within limit in 20 out of 30 instances. However,
the solver was not able to prove optimality within the time limit, on any of the
instances considered in this paper. Note that, for most instances, the solver
requires only a short amount of time to produce the best solution.

Figure 2(a) compares the number of hard constraints generated by the CNF
encoding and the CPU time needed to find the best solution for each instance.
One can see that most of these instances have a larger number of hard con-
straints. Most of them actually exceed in two orders of magnitude more con-
straints than the others (top right corner of Figure 2(a)). Most of these con-
straints result from the MaxBlock and MaxBreak constraints.

A large contributing factor for these results is the size of |Pc| and |Rc| (see
Table 1). In most cases, a larger size of these sets causes the instance to be
harder to solve. In these cases, more options do not always mean more solutions.
The lums* instances are an exception.

Minimal Perturbation in University Timetabling Our MaxSAT approach
was compared with a modified integer programming approach based on [14]. The
results showed that the integer programming approach is able to find the optimal
solution for the MPP but only to a subset of instances compared to those solved
by the MaxSAT approach. Furthermore, the MaxSAT approach is much faster.

Minimal Perturbation in University Timetabling with MaxSAT 13

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 1 1.5 2 2.5 3 3.5

|R
c
|

δNHD

(a)

 100

 1000

 10000

 10 100 1000

#
 c
la
s
s
e
s
 i
n

 "
s
a
m
e
"
c
o
n
s
t.

δHD

(b)

Fig. 3: (a) Room domain size (Rc) versus the normalized number of perturbations
(δNHD) for the room disruptions. (b) Number of classes involved on constraints
of type same (log scale) versus the number of perturbations (HD) for the time
disruptions (log scale). Data points represent the results and the line the best
fit function.

Our approach is able to find feasible solutions to all disruptions tested. More-
over, the solver is able to find an optimal solution for all disrupted instances.
Despite the fact that the disruptions only add new constraints, one can occa-
sionally improve the cost of the solution. This can be explained by the fact that
our original solutions are sub-optimal. Otherwise, the new solution could only,
in the best case scenario, be as good as the original one.

The results for the disrupted instances with invalid room and invalid time are
shown in Tables 2 and 3, respectively. The tables show the average and median
required CPU time to find an optimal solution, as well as the distance between
the two solutions (δHD) and the change in the global cost (δcost). It is important
to take into consideration that the value of δHD is directly linked to the size of
the instance due to the process of generating disrupted instances.

Figure 2(b) shows the CPU time, per university, for the instances with and
without disruptions. In most cases, less time is needed to solve a problem instance
subject to small disruptions than to solve the original problem instance. If the
disruptions cause no perturbations in the original solution, then almost no time
is needed (only parsing time). However, our disrupted instances were subject
to significant disruptions. In most cases, the solver is able to find the optimal
solution taking around the same time it took to find the best solution without
disruptions. The time spent to find a solution increases with the number of
perturbations required.

As one can see in Figure 2(b), the invalid room disruptions are, in most cases,
easier to sort out than invalid time disruptions. The CPU time is smaller since
fewer perturbations are needed. The reduction in time can be also explained by
the fact that a smaller number of hard constraints are, in fact, related to rooms.
The solutions found are, usually, closer to the original one. This can be explained
by the fact that most instances have fewer rooms than time slots available.

14 A. Lemos et al.

Table 2: Results for the Invalid Room disruption. δHD measures the number of
perturbations and δcost measures the change in the global quality of the solution.

Invalid Room

Avg. Time (s) Med. Time (s) Avg. δHD Med. δHD Avg. δcost Med. δcost

E
a
rl

y

agh-fis-spr17 1,460.4 1,612.7 22 29 42 39

agh-ggis-spr17 2,321.2 2,210.8 11 8 0 1

mary-spr17 231.5 253 25 29 54 55

muni-fi-spr16 2,133.2 2,317.9 15 18 4 6

muni-fsps-spr17 812 999.1 13 18 0 0

muni-pdf-spr16c 4,114.8 4,101.2 42 38 26 21

pu-llr-spr17 142.5 143 35 36 6 6

tg-fal17 1,208.8 1,247 100 112 18 19

M
id

d
le

agh-ggos-spr17 3,212.6 3,212.9 40 40 640 639

agh-h-spr17 679.9 699.9 19 20 57 60

lums-spr18 913.9 921.8 18 18 0 0

muni-fi-spr17 80.8 99 9 13 36 37

muni-fsps-spr17c 888.4 977.3 39 44 20 20

muni-pdf-spr16 1,354.5 1,444.1 89 94 1,335 1,336

nbi-spr18 3,701.7 3,781 14 13 33 35

yach-fal17 415.56 420 56 66 84 86

L
a
te

lums-fal17 999.9 1,000.2 20 20 0 0

mary-fal18 788.9 812.1 20 24 40 42

tg-spr18 813.8 888 5 8 100 100

muni-fi-fal17 248.9 250.1 9 10 36 30

The muni-f* instances are, in most cases, the most difficult instances to solve
after invalid room disruptions. This can be explained by the fact that these
instances are very tight in terms of room space. On average, these instances only
have 4 possible rooms by class versus an average of 14 in the other instances.

To evaluate the quality of the fittings the following metrics were defined.
Root mean square error (RMSE) has a range from 0 to ∞, where the best fit
model has a value closer to zero. Coefficient of determination (CD) has a range
between 0 and 1, where the best fit model has a value closer to 1. To perform
the fitting, we used the Microsoft Excel Solver [31].

Figure 3(a) shows the relation between the room domain size on δHD. The
RMSE of the fit function is 0.04. The CD is 0.95. Note that, for fairness we
normalized the value of δHD. The normalization simply takes into account the
number of disruptions generated to the instance (δNHD).

The lums* instances are the ones that have the largest δHD when tested
subject to invalid time disruptions (see Table 3). This fact can be explained by
the large number of constraints forcing the classes to be in the same allocation
slot (SameWeek, SameTime, SameDay and SameStart). These constraints force
a chain of perturbations for a single disruption. Figure 3(b) shows the relation

Minimal Perturbation in University Timetabling with MaxSAT 15

Table 3: Results for the Invalid Time disruption. δHD measures the number of
perturbations and δcost measures the change in the global quality of the solution.

Invalid Time

Avg. Time (s) Med. Time (s) Avg. δHD Med. δHD Avg. δcost Med. δcost

E
a
rl

y

agh-fis-spr17 1596.22 1711.1 5001 5003 4 6

agh-ggis-spr17 2358.2 2100.4 4 3 0 3

mary-spr17 381.2 380.1 0 4 0 6

muni-fi-spr16 1784.2 1794.2 16 18 0 0

muni-fsps-spr17 212.4 218.4 45 46 0 0

muni-pdf-spr16c 2992.1 3001.2 6 6 4 4

pu-llr-spr17 342.6 356 122 126 10 10

tg-fal17 1408.7 1484 2021 2070 25 25

M
id

d
le

agh-ggos-spr17 5465.8 5466.1 92 93 276 139

agh-h-spr17 919.1 920.9 97 98 290 289

lums-spr18 961 978.8 6446 6436 0 0

muni-fi-spr17 40.12 39 144 140 433 423

muni-fsps-spr17c 500.3 498.8 137 136 0 0

muni-pdf-spr16 1035.3 1030 636 630 6363 6364

nbi-spr18 3803.8 3991.1 164 186 3284 3289

yach-fal17 112.56 111 100 100 0 4

L
a
te

lums-fal17 1085.58 1100.1 6777 6787 0 0

mary-fal18 800.12 812.1 269 270 807 900

tg-spr18 933.2 934 568 559 1704 1705

muni-fi-fal17 149.2 140.2 101 108 50 51

between of the number of classes involved in constraints of type Same on the
δHD. The RMSE of the fit function is 131.8. The CD is 0.11.

5 Conclusion and Future Work

This paper discusses the real-world problem of solving university course
timetabling problems which can be subject to disruptions. We propose a
MaxSAT encoding to solve course timetabling and student sectioning problems.
To validate our approach, we used the ITC-2019 benchmark. The approach is
able to solve two thirds of the benchmark instances within the time limit of 6,000
seconds. Moreover, the proposed solution is able to efficiently solve them after
the occurrence of the most common disruptions reported in the literature.

As future work, we recommend extending this work to explore the incre-
mental nature of MPP. The application of an incremental algorithm would, in
theory, reduce CPU time bypassing the repetition of decisions during the search
for a feasible solution. Furthermore, one can study the performance of this im-
plementation using different SAT solvers.

16 A. Lemos et al.

References

1. McCollum, B.: University timetabling: Bridging the gap between research and prac-
tice. In: 5th International Conference on the Practice and Theory of Automated
Timetabling (PATAT). pp. 15–35. Springer (2006)

2. Vrielink, R.A.O., Jansen, E.A., Hans, E.W., van Hillegersberg, J.: Practices in
timetabling in higher education institutions: a systematic review. Annals of Opera-
tions Research 275(1), 145–160 (2019). https://doi.org/10.1007/s10479-017-2688-8

3. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and interna-
tional timetabling competition 2019. In: Proceedings of 12th International Con-
ference on the Practice and Theory of Automated Timetabling (PATAT). p. 27
(2018)

4. Müller, T.: ITC-2007 solver description: a hybrid approach. Annals of Operations
Research 172(1), 429 (2009). https://doi.org/10.1007/s10479-009-0644-y

5. Di Gaspero, L., Schaerf, A., McCollum, B.: The second international timetabling
competition (ITC-2007): Curriculum-based course timetabling (track 3). Tech.
rep., Queen’s University (2007)

6. Laporte, G., Desroches, S.: The problem of assigning students to course sections
in a large engineering school. Computers & Operations Research 13(4), 387 – 394
(1986)

7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. Society for Industrial and Applied Mathematics Journal on Com-
puting 5(4), 691–703 (1976). https://doi.org/10.1137/0205048

8. Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course
timetabling. In: 5th International Conference on the Practice and Theory of Au-
tomated Timetabling (PATAT). pp. 126–146 (2004)

9. Atsuta, M., Nonobe, K., Ibaraki, T.: ITC-2007 track 2: an approach using a gen-
eral CSP solver. In: 7th International Conference on the Practice and Theory of
Automated Timetabling (PATAT). pp. 19–22 (2008)

10. Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T., Schaub, T., Soh, T., Tamura,
N., Wanko, P.: teaspoon : Solving the curriculum-based course timetabling prob-
lems with Answer Set Programming. Annals of Operations Research 275(1), 3–37
(2019)

11. Bittner, P.M., Thum, T., Schaefer, I.: SAT encodings of the at-most-k constraint
- A case study on configuring university courses. In: Proceedings of the Software
Engineering and Formal Methods (SEFM). pp. 127–144 (2019)

12. Achá, R.J.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT
and MaxSAT. Annals of Operations Research 218(1), 71–91 (2014)

13. Lemos, A., Melo, F.S., Monteiro, P.T., Lynce, I.: Room usage optimization in
timetabling: A case study at Universidade de Lisboa. Operations Research Per-
spectives 6, 100092 (2019). https://doi.org/10.1016/j.orp.2018.100092

14. Lindahl, M., Stidsen, T., Sørensen, M.: Quality recovering of university timetables.
European Journal of Operational Research 276(2), 422 – 435 (2019)

15. Phillips, A.E., Walker, C.G., Ehrgott, M., Ryan, D.M.: Integer programming for
minimal perturbation problems in university course timetabling. Annals of Opera-
tions Research 252(2), 283–304 (2017). https://doi.org/10.1007/s10479-015-2094-z

16. Gülcü, A., Akkan, C.: Robust university course timetabling problem subject to
single and multiple disruptions. European Journal of Operational Research 283(2),
630 – 646 (2020)

https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10479-009-0644-y
https://doi.org/10.1137/0205048
https://doi.org/10.1016/j.orp.2018.100092
https://doi.org/10.1007/s10479-015-2094-z

Minimal Perturbation in University Timetabling with MaxSAT 17

17. Zivan, R., Grubshtein, A., Meisels, A.: Hybrid search for minimal
perturbation in dynamic CSPs. Constraints 16(3), 228–249 (2011).
https://doi.org/10.1007/s10601-011-9108-5

18. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar
solutions in constraint programming. In: 20th National Conference on Artificial
Intelligence and 17th Innovative Applications of Artificial Intelligence. pp. 372–
377 (2005)

19. Hamming, R.W.: Error detecting and error correcting codes. The Bell Sys-
tem Technical Journal 29(2), 147–160 (1950). https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x

20. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS
press (2009)

21. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

22. Carter, M.W.: A comprehensive course timetabling and student scheduling system
at the University of Waterloo. In: 3rd International Conference on the Practice
and Theory of Automated Timetabling (PATAT). pp. 64–84 (2000)

23. Schindl, D.: Optimal student sectioning on mandatory courses with various sections
numbers. Annals of Operations Research 275(1), 209–221 (2019)

24. Roussel, O.: Controlling a solver execution with the runsolver tool. Journal on
Satisfiability, Boolean Modelling and Computation 7(4), 139–144 (2011)

25. Nadel, A.: Anytime weighted MaxSAT with improved polarity selection and bit-
vector optimization. In: Proceedings of the 19th Conference on Formal Methods
in Computer Aided Design (FMCAD) (2019)

26. Nadel, A.: TT-Open-WBO-Inc: Tuning polarity and variable selection for anytime
SAT-based optimization. In: Proceedings of the MaxSAT Evaluations (2019)

27. Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for incomplete
MaxSAT. In: Principles and Practice of Constraint Programming (CP). pp. 219–
228 (2018)

28. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Annals of Mathematics and Artificial Intelli-
gence 62(3-4), 317–343 (2011)

29. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into
problems with boolean variables. In: Proceedings of the Seventh International Con-
ference on Theory and Applications of Satisfiability Testing (SAT). vol. 3542, p.
1–15 (2004)

30. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters 68(2), 63–69 (1998)

31. Fylstra, D.H., Lasdon, L.S., Watson, J., Waren, A.D.: Design and use of the Mi-
crosoft Excel solver. Interfaces 28(5), 29–55 (1998), https://doi.org/10.1287/
inte.28.5.29

https://doi.org/10.1007/s10601-011-9108-5
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1287/inte.28.5.29
https://doi.org/10.1287/inte.28.5.29

	Minimal Perturbation in University Timetabling with Maximum Satisfiability
	Introduction
	Background
	University Timetabling
	Minimal Perturbation Problem
	MaxSAT

	MaxSAT encoding
	Course timetabling
	Student Sectioning
	Disruptions

	Experimental Evaluation
	Experimental setup
	Computational results
	University Course Timetabling
	Minimal Perturbation in University Timetabling

	Conclusion and Future Work

