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—— Abstract

This paper shows P = NP via exactly-1 3SAT (X3SAT). Let ¢ = A\ Ck be some X3SAT formula.
Cr=(ri®r; ®ry) is a clause denoting an exactly-1 disjunction ® of literals r;, r; € {z;,Z;}. Ck is
satisfied iff (ri AT;ATW)V (FiATj ATW) V (Fi AT ATy) is satisfied, because any Cj, contains ezactly one
true literal by the definition of X3SAT. Let ¢(r;) := r; A ¢. Then, r; leads to reductions due to ® of
any Cp = (T; ©O1; O xy) into cx = £ A1j ATy, and any C, = (T; O ry @ ry) into Cir = (1, © 1ry). Thus,
@(r;) == rj A ¢ transforms into ¢(r;) = ¥(r;) A ¢'(r;), unless ¥ 1 (r;) — unless 1 (r;) involves some
contradiction z; A Z;. Then, v(r;) and ¢'(r;) are disjoint, where ¥(r;) = A\(cx A Cy/) for |Cs| =1,
and ¢'(r;) = A(Cr A Cyr). Also, it is easy to verify ¥ ¢(r;), because it is trivial to verify ¥ ¢(r;), and
redundant to verify ¥ ¢'(r;). Proof is sketched as follows. (r;) is true, and (r;) F ¥ (r;|r;) holds,
hence ¥(r;|r;) is true, because any r; such that ¥ ¢ (r;) is removed from ¢. Then, 7; consists in ¢
to transform ¢ into ¥ A @'. If ¢ involves x; A T;, then ¢ is unsatisfiable. Otherwise, ¢ is satisfiable,
since ¥(Tig), ¥ (731|750 ), - - -, Y (74, |74, ) compose ¢ such that each 1(.) is disjoint and satisfied. Then,
(r;) is true, ¢ is satisfied, and (r; A ¢) = (1/)(7’i) A qﬁ'(ri)). Thus, ¢'(r;) is satisfied. Consequently, it
is redundant to check if ¥ ¢'(r;) to verify if ¥ ¢(r;). The complexity is O(mn?®). Therefore, P = NP.
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1 Introduction: Effectiveness of X3SAT in proving P = NP

P vs NP is the most notorious problem in theoretical computer science. It is well known that
P = NP, if there exists a polynomial time algorithm for any one of NP-complete problems,
since algorithmic efficiency of these problems is equivalent. Nevertheless, some NP-complete
problem features algorithmic effectiveness, if it incorporates an effective tool to develop an
efficient algorithm. That is, a particular problem can be more effective to prove P = NP.
This paper shows that one-in-three SAT, which is NP-complete [2], features algorithmic
effectiveness to prove P = NP. This problem is also known as exactly-1 3SAT (X3SAT).
X3SAT incorporates “exactly-1 disjunction ®”, the tool used to develop a polynomial time
algorithm. It facilitates checking incompatibility of a literal r; for satisfying some formula ¢.
When every r; incompatible is removed, ¢ becomes un/satisfiable. Thus, each r; becomes
compatible to participate in some satisfiable assignment. Then, an assignment is constructed.
If # ¢(r;), that is, ¢(r;) is unsatisfiable, then r; is incompatible for satisfying ¢, where
é(rj) =r; N\ ¢, and r; € {z;,7;}. The ¢ scan algorithm, introduced below, “scans” ¢ by
checking compatibility of any r; in satisfying ¢, and removing each incompatible r; from ¢.
Let ¢ = CiA--- A Cp, be any X3SAT formula such that a clause Cp = (r; ©@ r; © ry,) is
an exactly-1 disjunction ® of literals r;, hence satisfied iff ezactly one of {r;,r;,r,} is true.
Note that a clause (r; Vr; Vry) in a 3SAT formula is satisfied iff at least one of them is true.
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Incompatibility of each r; is checked by a deterministic chain of reductions of clauses Cj,
in ¢(r;). Let ; := x;. Then, the reductions are initiated by x;, and followed by —;, because
xj = —z;. That is, each (2;©0Z; © x,,) collapses to (x; A x; AT,) due to z; = ;A =T; A Ty,
since there is exactly one (negated) variable that is true in any Cj, by the definition of X3SAT.
Also, each (T; © T, ® x,) shrinks to (T, ® x,) due to —T;. As a result, x; transforms ¢ into
d(xj) = xj Ax; ATy A ¢, and z; AT, proceeds the reductions in ¢*, which involves (T, ® x).

The reductions over ¢(z;) terminate iff 2; A ¢, transforms into ¥(x;) A ¢ (x;) such that
¥s(x;) and ¢/ (z;) are disjoint, where s denotes the current scan, and 1,(x;) is a conjunction
of (negated) variables that are true. They are interrupted iff ¢,(x;) involves some z; A T;,
thus ¥ ¢s(z;), and x; is incompatible. That is, # ¢,(.) is verified solely by ¥ 1s(.) (Figure 1).

The reductions over ¢ terminate iff ¢ transforms into 1 A ¢’ such that ) and ¢’ are disjoint,
where ¥ = Ts Az, A« - - ATs (see Figure 1). Then, ¢ is updated, that is, ¢ < ¢'. The ¢ scan
is interrupted iff ¥, involves x; A T; for some s and 4, thus ¥ ¢, that is, ¢ is unsatisfiable.

w5 = Ty for ¢, if ¥ (x5)

ot | } o o)
Ty, = Ty for ¢, if ¥ s (T,,)
¢2 t f } b2 da(an)
: Ty = To, if ¥ s (‘7;2) .
Gs—1 | 1 1 | Gy = ds_1(T2)

Figure 1 The ¢, scan: ¥ ¢;(r;) is verified solely by ¥ 15(r;), and whether ¥ ¢(r;) is ignored

> Claim 1. It is redundant to check whether or not ¥ ¢/ (r;). That is, ¥ ¢s(r;) iff ¥ ¢s(r;) for
some s. As a result, ¢(r;) reduces to 1 (r;) due to ¢(r;) = (r;) A¢'(r;). Then, ¥(r;) = ¢(r;).
Therefore, ¢ is satisfiable iff ¢ (r;) is satisfied for any r;, that is, iff the scan terminates.

Sketch of proof. (r;)/1(r;|r;) is constructed over ¢/¢’(r;), thus ¥(r;) covers ¥ (r;|r;), hence
¥(r;) E (ri|r;) holds. Because 9(r;) and ¢'(r;) are disjoint, 1 (r;) and ¢(r;|r;) are disjoint
(see Figure 2). Therefore, 1(r4,), Y (riy|Tig)s Y (Tiy|Tig, 74y )y a0 Y(Tig |74, 74,5 T3y ) form disjoint
minterms (.) = Ar; over ¢ such that ¥ (r;,), (7,70 )s V(Tiy|Tigs 75,), a0 V(135 |Tig, Tiys Tis)
hold, because 9 (r;) is true for any r; (the ¢ scan terminates), and ¥ (r;) F 1 (r;].) holds. Thus,
¢ is composed of 1 (.) that are disjoint and satisfied (see Figure 3), hence ¢ is satisfied. <

2y viry) : {
¢(7‘j) } ¢(T'j) J ¢ (7"7‘) }
(b,(rj) Syl W(Tzh’J) } ¢ (7’1‘7‘]) }

Figure 2 Since v(r;) = /\r; is true and ¥(r;) 2 ¥(rs|r;), ¥(rs|r;) is true, hence ¥(r:) E 9 (ri|r;)

A satisfiable assignment « is constructed by composing v(.) that are disjoint and satisfied.

For example, a = {1/% U(’zo)a U(’Zl ‘7‘7'«))’ L ‘("/: "'iw iy ), /l/)(ris |Til)7 Tiys 7'2'2)} (See Figure 3)‘
GOy Virs) | )
: — | |
¢ I 1
»(r; ' (s
¢(7‘i0) | ( 70) { ( 7«0) {
¥(riy|riy) ¢ (ri|riy)

@' (rig) > 7iy | 1 {
U(7ig|Tigs 74y & (13730, T3y)
O (ris|rio) 374y | = - |
W(Tig [Tigs Tins Tin)
¢/(7‘772|Ti077'771) S Tig f SR }

Figure 3 ’Q)(7'i1) F /Uj(7‘i1 "‘i/o)v W(riy) F "(’V_'"'m- ri,), and w(’u) F w(ri3|7'iuarilvri2)
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2 Basic Definitions

A literal ; is a variable z; or its negation Z;, i.e., 7; € {z;, T;}. A clause Cp= (r; O r; ®ry)
denotes an exactly-1 disjunction ® of literals. Then, either z; = T or T; = T holds in C}.

» Definition 2 (Minterm). ¢, = Ar;, and any r; in ¢k, called a conjunct, is true, thus ¢y = T.
» Definition 3 (X3SAT formula). ¢ =¥ A ¢ such that ¥ = Ac and ¢ = \Cy.

Where appropriate, Cy, as well as 1, is denoted by a set. Thus, ¢ = 1 A ¢ the formula,
that is, o = Y AC1ACo A -+ - A Cy, is denoted by ¢ = {1, C1,Cs, ..., Cp,} the family of sets.
» Definition 4. Cj, = (r;©r; O ry) is satisfied iff (ri NTjATy)V (Fi AT AT,V (FiAT; ATy)
is satisfied, since any clause Cy, contains exactly one true literal by the definition of X3SAT.
» Definition 5 (Incompatibility). r; in some Cy, is incompatible, denoted by —r;, iff r; leads to
a contradiction x; NT;, that is, r; A ¢ is unsatisfiable, hence r; is removed from every Cy, in ¢.

» Remark. Each z; and T; in ¢ is assumed to be compatible, thus no C} contains —x;, or —T;,
while any 7; in v is necessarily true by Definition 2/3, thus denotes a conjunct, to satisfy .

» Note 6. If r; € v, then r; = —7,;, that is, 7; becomes incompatible, and is removed from ¢.
If r; = x; AT;, hence —x;V —~T; = —r;, then —r; = 7, that is, 7; becomes a conjunct (7; € v).

» Definition 7. £={1,2,...,n} denotes the index set of the literals r;, € = {1,2,... ,m}
denotes the index set of the clauses Ck, and €= {k € €|r; € Cy} denotes Cy, containing r;.

» Example 8. Let ¢ = (111 © T31) A (212 © Tag © w32) A (223 © T3z © Ty3) A T4. Note that
C3 = (22 ©® T3 © Tyq), and that Ty is a conjunct (necessarily true) for satisfying ¢. Also,
¢ ={1,2,3}, €21 ={1,2}, and €% = {3}. Let o = (210 T3) A (21O T4 ® x23) A (x2 O T3) A 4.
Then, €4 = ), and Cy = {x1, T3}, C2 = {1, T4, 22} and C3 = {x3,T3}, while ¢ = {a4} in .

» Definition 9 (Collapse). A clause Cy, = (r; © x; © ) is said to collapse to the minterm
ey = (ri ANTj A xy), thus m; & Cy, if r; is necessary, denoted by (1, © z; © Ty,) \(1s A Tj A Ty,).

» Definition 10 (Shrinkage). A clause Cy, = (r; © ;@ 1) s said to shrink to another clause
Cy = (r; O ry), if -r; (r; the incompatible is removed), denoted by (1, @ 1;O 1) — (r; O 1y).

» Definition 11 (Truth/Compatibility of r; over ¢). ¢(r;) = ;A ¢ for any r; € Cy, and Cy, € ¢.

» Note 12 (Reduction). The collapse or shrinkage denotes a reduction of Cy. If r; € 1, then
r; leads to reductions over ¢, which reduces ¢, ¢ — ¢’. Hence, ¢ — ¢’ iff Ci\, ¢x or Cgr— Ch.
Since 7; is necessary for ¢(r;), it leads to reductions over ¢(r;). Thus, (F;Or,O1y) — (ryO1y)
and (r; © x; Oy ) \((r; ANT;A x,,), because r; = —F; such that r; = r; AT; Az, holds over any
Cp=(r,®x;®T,), since r; = —x; A Ty, thus ~z; = T; and ~T, = z, (see Definition 4/5).

» Definition 13. ¢ denotes a general formula if {x;,T;} € C for anyi € £ and k € €, hence
€N E% = (). ¢ denotes a special formula if {z;,%;} C Cy for some k, hence €*iN €% = {k}.

» Lemma 14 (Conversion of a special formula). Each clause Cy, = (r; ® x; © T;) is replaced
by the conjunct 7; so that €N €% = for any i € £, if ¢ = \Cy is a special formula.

Proof. ¢ is unsatisfiable due to r; = T; A ;. Then, z;V ; = 7;. That is, 7; is necessary for
satistying Ci = (r; © x; © T;), which is sufficient also, thus 7, is equivalent to Cj. Therefore,
each clause Cy, = (r; © x; © T;) is replaced by the conjunct T; so that €% N €% = (). <

» Example 15. ¢ = (210 T2 @ 22) A (21O T3 ® x4) A (2 © T1) is a special formula due to
Cy = {x1,Ta, 2}. Note that €*2 N €%2 = {1}. Then, ¢ is converted by replacing the clause
C with the conjunct T1. As a result, ¢ < T1 A (x1 O T3 @ 24) A (x2 @ T1). Likewise, if ¢ =
(563 OT4O 1‘4) A (fg [OF @fg) A (582 @fl), then ¢ < T3 Ax3 A (562 @fl), which is unsatisfiable.
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3 The ¢ Scan

This section addresses the ¢ scan. Section 3.2 introduces the core algorithms. Section 3.3
tackles satisfiability of ¢, and Section 3.4 tackles construction of a satisfiable assignment.

s for s > 2 denotes the current formula at the s* scan/step such that ¢ = ¢, after —r;
holds in ¢4_1 (see Definition 5). Then, ¢%5i = (7ik, © Tuyky @ Tusky ) A+ A (Tike. @ T o © Tk, )
denotes the formula over clauses Cj 3 r; in ¢5, where r; € {z;,T;}. Hence, €7i = {ky,..., k. }.

Eap denotes that the assignment o = {ry,r2,...,7,} satisfies ¢, and ¥ ¢ denotes ¢ is
unsatisfiable, while 1 F v’ denotes 1)’ is the logical consequence of 1y —as ¢ =T, ¢/ = T.

s (r;) is called the local effect of r; and QNSS(—w) is the effect of —r;. @(r;) denotes its
overall effect such that @4 (r;) = U5 (1) A ¢s(—7;), specified below. Also, ¥, (r;) = A(ck A Ci)
such that |Cy| = 1. Moreover, ¢,(—r;) = ACj such that [Ci| > 1, or ¢4(—r;) is empty.

3.1 Introduction: Incompatibility and Reductions

Example 16 (17) introduces incompatibility (reductions over ¢), which drive the ¢ scan.

» Example 16. Consider ¢(x1) over o = ¢ = (21O T3) A (21O Ta @ x3) A (22 © T3). Thus, 21
is necessary for ¢(z1), hence z; F (1) such that (1) = (z1Ax3) A (21 A 2o AT3). That is,
x1 = —T3 holds over C; = (z1® T3), hence =T3 = x3. Likewise, £1 = —T2 A =3 holds over
(x1© Ty ® x3), hence =Ty = 2 and -3 = T3 (see Note 12). Thus, ¢(z1) = (1) A ¢(=T1)
becomes the overall effect, where &(—@1) is empty. Then, the reductions initiated by x; over

¢(x1) are to proceed due to 5. Nevertheless, they are interrupted by xz3 A Ts due to 1(z1).
Hence, ¢(x1) = @(z1) A (x2 © T3) is unsatisfiable, thus x; is incompatible for ¢, i.e, ~x1 = T1.

» Example 17. 7, initiates reductions over ¢ (Note 12). Then, ¢(F1) = T1 A T3, ¢(—x1) =
(T ®x3), and G(T1) = Y(T1) Ad(—x1) to construct o = G(T) A (22O T3). Note that (22O F3)
is beyond @(71) the overall effect. Note also that {Z3} ¢ ¢(—x1), while T3 € 1)(Z;), because
C1— c1, since gg(—'xl) contains no singleton. Then, 9 is the current formula due to the first
reduction by T over ¢. Thus, ¢ — @5 due to (21O T3) — (T3) and (210 T2O x3) — (T2 O x3).
As aresult, po = TiAT3 A (T2 © x3) A (22O T3), in which ¢y = {1, T3} denotes the conjuncts,
and C) = {T, 23} and Cy = {x2, T3} denote the clauses. Note that €5° = {1} and €3° = {2}.
Then, T3 leads to the next reduction over ¢p: vy (T3) = (T2 A T3), da2(—x3) is empty, and
952(53) = 1)/;2(?3) A ¢Z2(‘L’E3). ThUS7 Y2 — P3 due to (IL‘Q ® f‘g)\"(fz A fd) and (fg O] 1’3) — (TQ)

Then, v3 = @(T1) A p2(T3) = T1 AT A Ts, which denotes the cumulative effects of T; and Ts.

3.2 The Core Algorithms: Scope and Scan

This section specifies Scope and Scan, which incorporate the overall effect @,(r;), defined
below. Recall that 7; is removed, if r; is necessary for satisfying some formula, i.e., 7; = —7;.
Note that ¢g’ = (7, © iy by © Tigky ) A= A (Tt @ Tuy k. © Tunk,.) for Lemma 18 and 19 below.

> Lemma 18. 1, (1) such that {(rj) = rj ATiy ATiy A+ ATy, ATy, unless ¥ hg(r;).
Proof. Follows from Definition 9. That is, 7; = (rj AT, ATi,) A+ A(rj ATy, ATy, ). Hence,
T = Ti AT AT N ATy AT, <
» Lemma 19. If —r;, then ¢o(—r;) holds such that ¢s(—r;) = (riy, @ Tiy) A= A (T, © Ty )-
Proof. Follows from Definition 10. ¢s(-r;) = {{}}, or |Ck| > 1 for any Cy in ¢s(-r;). <«
» Lemma 20 (Overall effect of r; over ¢,). @q(r;) = 1s(r;) A bs(—7;).

Proof. Follows from r; F r; A =7, as well as from Lemma 18, and Lemma 19 via gsz. <
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The algorithm OvrlEft (r;, ¢,) below constructs the overall effect ¢, (r;) by means of
the local effect ¢, (r;) (see Lines 1-6, or L:1-6), as well as of the local effect ¢, (—7;) (L:7-10).

Algorithm 1 OvrlEft (r;, ¢s) > Construction of the overall effect @.(r;) due to Lemma 20

1: for all k € ¢}/ over ¢, do > Construction of the local effect ¢, (r;) due to r; (Lemma 18)
2 for all r; € (Ck — {Tj}) dov ). (r;) gets r;j via 7. (see Scope L:4), or via 7; (Remove L:2)
3 ek ckU{Ti} o (1O Tk © Tigk ) \((Tiyk A Tinr). That is, C\, cx (see Definition 2/9)
4 end for

5: 1;* (rj) < l/;*( i)Uck >k consists in ¥s(r;) (see Scope L:4), or in 1/)5 (see Remove L:2
6

7

8

9

. for all k € €7 over ¢« do > Construction of the local effect qb*(—\r]) due to —7; (Lemma 19
Cp <+ C,— {?j}; B (Tjk O Turk O Tugk) ™ (Taug ke @ Tugk) OF (T @ ) — (Tur) (Definition 10

: if |Ci| = 1 then 1), (rj) « W, (r;)UCl; C 4 ;> ¢, (—7;) contains no singleton, Ci — cx
10: end forp> 3\2-literal C in ¢ shrinks due to —7; to 2-literal Cy, in (;S;'v\to conjunct Ty i1 (75)
11: return LN)x(r]) & c;x(ﬁT,) VERNERIN zl;*(rj) =ANxACr), |Ck|=1& P 75) = A\Ch, |Ci| > 1

)
: end fory L:1- 6 are independent from L:7-10, since €N €L =0, i.e., €7 NEL =0 (Lemma 14)
)
)

» Lemma 21 (Scope of 7;). 1, E ¥s(r;), if rj transforms ¢s into ¢s(r;) = ws(rj) A d(r;)
such that ¢¥s(rj) = \rj is a conjunction of literals that are true, which is called the scope,
and that ¢ (r;) = \Ck is an X3SAT formula, called beyond the scope. Otherwise, ¥ ¢4(r;).

Proof. ¢,(r;) = ;A\, by Definition 11. Then, r; initiates a deterministic chain of reductions
(see Note 12). As a result, 7; = ;A x; A T, holds over each C, = (r;®Z; ® x,,) containing r;,
and —7; = (T,® x,) holds over each C}, = (T;©T, ® ) containing 7;. These reductions thus
proceed, as long as new conjuncts 7. emerge in ¢4(r;) (see Scope L:2-4). If the reductions
are interrupted, then r; is incompatible (L:5). If they terminate, then the scope 15(r;) and
beyond the scope ¢/,(r;) are constructed (L:9), where ¢s(r;) = Ar; and ¢, (r;) = ACk. <

Algorithm 2 Scope (7, ¢5) > Construction of ¢ (r;) and ¢%(r;) due to rj over ¢s; ps = s A ds

L g(ry) <= {rj}; b < bss > ¢s(r;) =1 A ¢s. Vs and ¢ are disjoint due to Scan [:1-3
2: for all r, € (1/J5 (rj) — R) do > Reductions of C initiated by r; over ¢ start off
3: OvrlEft (re, dx); > It returns 1;*(7“6) for L:4 & (]3*(—?@) for L:6
4: ws(r]) — g(rj)U{re} Uy (7¢);5 1 (e ) due to OvrlEft L:5,9 consists in the scope s (r;)

if 14(r;) 2 {x;,7;} then return NULL; > r; = z; /\m,, i € Lo Eaps(ry), thus ¥ ¢s(r;)
¢>*(—\7“) — ¢*(ﬂ7“) U(b*(—\re) > b (—r) {{}} or ¢.(=r) = JCh, |Ck| > 1 (OvriEft L:8-11)
by < Oy (-r)A@L; R+ RU{r.}; > ¢.(—r) and ¢, consist in beyond the scope ¢ (r;)
> ¢, = \Cy for k € €, where €\, =€, — (€i° U ¢%), and €% N ¢% = ) due to Lemma 14
8: end for> The reductions terminate if ¥(r;) = R, which denotes conjuncts already reduced Cj,
9: return ¢, (r;) & @L(r;) < b > @s(ry) = Us(rs) A @i(ry). ¥s(rj) = Arjand ¢%(r;) = ACr

N

» Note 22. £,(r;) being an index set of 1s(r;), Ls(r;) NLL(r;) = 0 and L4(r;) UL, (r;) = £2,
if Scope (1}, ¢s) terminates. Thus, t4(r;) and ¢ (r;) are disjoint, where ¢/ (7;) can be empty.

» Example 23. Consider ¢(z1), Scope (21, ¢), for ¢ = (21O T3) A (1O T2 @ x3) A (X2 O T3).
(xq) + {21} and ¢, < ¢ (L:1). Then, ¢2! is empty, and ¢%' = (21O T3) A (v1O T2 ® x3) due
to OvrlEft (x4, ¢, ). Also, €21 = {1,2}, thus ¢; + {z3} and U, (1) < Uy (21) U ey, as well as
o {x2, T3} and U, (1) < . (x1) Ucy (see OvrlEft L:1-6). Then, o, (z1) = {3, o, T3}
& ¢ (—T1) < ¢ (OvrlEft L:11). As a result, ¢(z1) < ¢(z1) U {z1} U (1) (Scope L:4),
and ¥(x1) D {z3,%3} (L:5), that is, 1 = 3 A T3, hence z; is incompatible in the first scan.
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» Definition 24. £+={ic £|r,€ s} and L*={i € £|r; € Cy in ¢s} due to s = s A\ Ps.

Scan (ps) decomposes ¢ into ¥s(x1),Vs(T1), - .-, Vs(Tn), when s and ¢ are disjoint. If

E 1s_1(r;), then 7; consists in ¢, and z; and T; are removed from ¢,. For example, ¥ ¢,_o(T;)
and ¥ 1,_1(z3) hold in Figure 4, where ¢y = 21 AT3 and ¢s = (24O T2 @ xpn) A+ - A (22O Ty).

ws(fﬁ) =TZgNTgNANTg NTy N\ T7
Ps=TINTZN (T4 O T2 Tp) A A (T O x8) A (T6 O T O 4) A (7 O x8) A+ A (720 Ty
S~ Y—-— —
ws Cl C1n
®s
Figure 4 Scan (s) decomposes ¢s into ¥s(z1), s (T1), . . ., ¥s(Tn), ¥s(Tr), unless ¥s(.) D {z:, Ts}

If 7; € 1, then T; is necessary, thus r; € Cf is incompatible trivially for each Cy in ¢ (see
Scan L:1-2). For example, if 21 A (21 ® 22 ® T3) holds, then T; becomes incompatible trivially.
Note that 1 € £2 and x; € 1), and that T, = T1 A x1. If 7; = x; A T;, then 7; is incompatible
nontrivially (1:6). See also Note 6/25. If Scan (¢;) is interrupted by Remove L:3, then ¢ is
unsatisfiable. If it terminates (L:9), then a satisfiable assignment is determined (Section 3.4).

» Note 25. It is obvious that & o,(r;) if # (s A7;) or B (1A ¢s) due to ps(rj) = s ATj A s
by Definition 3/11, in which 7; A ¢s = ¢5(r;), and that ¥ o,(r;) iff —r; holds by Definition 5.

Algorithm 3 Scan (ps) b @s = s A ¢s, s = \ri and ¢s = A\ Cr. Checks if ¥ @, (r;) for all i € £2
for alli € £2and 7; € ¥y do > ws(ri) = s Ari A ds, thus ¥ (s A1), that is, r; = 2, A T;

Remove (7, ¢s); > T is necessary, thus r; is incompatible ¢rivially, hence 7y = —r;
end for> If i € £¥, r; has been already removed, hence 7; € 15 and 7; ¢ CyxVk € €, ie., i & £2
for all i € £¢do > £¥N £¢ = () due to L:1-3. Hence, i € £¥iff r; = x; is fized or r; = T; is fized

for all r; € {z;,%;} do > Each and every z; and T; assumed compatible is to be verified

if Scope (74, ¢s) is NULL then Remove (r;, ¢s); > ¥ ¢4(r;), incompatible nontrivially

end for > If r; = x; A T;, hence —x; V =T, = —r;, then —r; = T;, where i # j due to L:1-3

end fory —r;iff 7;, since —r; = 7; due to nontrivial, and —r; <= 7; due to trivial incompatibility
return ¢ = ¢ A ¢, and ¥(r;) & ¢/ (r;) for all i € £é; > ¢ + s and ¢ + ¢s. See also Note 27

el

» Note 26. £+ and £¢ form a partition of £ due to Definition 24 and Scan L:1-3.

» Note 27. When Scan terminates, ) and ¢ become disjoint, and ¢ = Nice (V(z:) ® (7)),
where £ < £é. Also, 1) = Ar; and ¢ = \Cy, such that |Cy| > 1, because each Cj, = {rl} in
¢, for any s transforms into r; in 1/1 That is, Cy = (r;® ;) or Cp = (r; ©r; ©ry) in qb

Remove (r;, ¢5) leads to reductions of any Cy > 7; due to 7, which consists in ¢, (see
L:1-2), as well as of any C, > r; due to —r;, which consists in ¢s41 (see L:1,5).

Algorithm 4 Remove (7, ¢5) > r; is incompatible/removed iff 7; is necessary, i.e., —r; iff 7;

OvrlEft (7, ¢s); > OvrlEft is defined over ¢ = A\ Ck, |Ck| > 1, and returns ¢ (7;) & és(-r;)

Ygp1 4 Y5 U {?j} U 1/;8 (?j); > thsy1 = /\ri is true by definition, unless 1,41 involves z; A T;

if 1511 2 {w;,7;} for some ¢ then return ¢ is unsatisfiable; > s = s A s

Lo Lo — {j}; Lv+ LU {j};

Pst1 4 qﬁs(ﬂ“]) A¢L; Update {Cy} over ¢S+1, > ¢, denotes clauses beyond the entire v, effect
b ¢, = \Cx for k € €., where €, = ¢, — (€27 U ¢7), and €2/ N €% = ) due to Lemma 14

6: Scan (wsy1); b 7 verified compatible for § < s can be incompatible for § > s due to —r; in ¢
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3.3 Satisfiability of the Formula ¢ vs Satisfiability of the Scope ¢ (r;)

This section shows that ¢ is satisfiable iff ¢)(r;) is satisfied for all i € £, and any r; € {x;,T;}.
Recall that r; is removed from ¢ if ¢(r;) is unsatisfied, which is trivial to check (Scope L:5).

» Proposition 28 (Nontrivial incompatibility). ¥ ¢,(r;) iff ¥ ¥s(r;) or ¥ ¢ (r;) for any s.
Proof. Proof is obvious due to ¢(r;) = ¢s(rj) A ¢(r;) by Lemma 21. <

» Note 29 (Assumption). ¥ ¢4(r;) is verified solely via ¥ ¢s(r;) for some s, which is sufficient
for incompatibility, that is, whether or not ¥ ¢/ (r;) is ignored for any s.

The following introduces the tools to justify this assumption that facilitates the ¢ scan.
» Definition 30. £,(r;) = £(¢)s(r;)) denotes the index set of s(r;), and L,(r;) = (¢ (r:)).

» Definition 31. s(r;|r;) is called the conditional scope, and ¢,(r;|r;) is conditional beyond
the scope, which are defined over ¢/,(r;) for j # i, that is, constructed by Scope (r;, ¢%(r;)).

» Lemma 32 (No conjunct exists in beyond the scope). £,(r;) N L.(r;) =0 for any j € £2.

Proof. ¢/, (r;) = ACk due to Lemma 21. Let r; the conjunct be in Cy, i € (£4(r;) N L,(r;)).
Then, for any Cy 3 7, (1,© ;O Ty) \((r; AT; A ), thus 7; ¢ Ci. Moreover, for any Cj, > 7,
(Fi®OTy@ry) — (ry®ry), thus 7; ¢ Cy. See Definition 9/10. Hence, i ¢ (£,(r;)NLL(r;)). <

» Lemma 33. £¢ is partitioned into £4(r;), Ls(rj|rj), ..., Ls(r5,1r5,.) by means of Scope.

» Lemma 34. ¢,(r;) is decomposed into disjoint s(7;), Vs(15,|75), -, ¥s(rj,

Tjm)-

Proof. Scope (r;, ¢5) partitions £¢ into £4(r;) and £ (r;) for any j € £¢ (see also Lemma 32).
Thus, ¢,(r;) is decomposed into disjoint 1s(r;) and ¢,(r;). Scope (r;,, ¢}(r;)) partitions
£ (r;) into L4(rj,|r;) and £, (r;,|r;) for any j1 € £,(r;). Thus, ¢,(r;) is decomposed into
disjoint s(rj,|r;) and @) (r;,|r;). Finally, ¢ (r;, |r;) is decomposed into disjoint ¥s(rj, |75,.)
and ¢ (rj,|r;,,) for any j, € £.(r;, |r;) such that £ (r;, |r;,.) =0 (see also Note 22). <

The following properties hold if Scan terminates (1.:9). Then, ¥ A ¢ transforms into 12) A $
Let ¢ < ¢, thus £ < £é. Then, ¢(r;) is true, ¥(r;) = T, for every i € £ and r; € {x;,7;}.

» Lemma 35. ¢/(r;) is decomposed into disjoint ¥ (rj,|r;), Y(rj, |5 )s -, (T4, 175..)-
Proof. Follows from Lemma 34, and from ¢(r;) = ¢ (r;) A ¢'(r;) due to Lemma 21. <

» Lemma 36. ¢ D ¢'(r;) D ¢'(r,|r5) 2 &' (r4,|r5,) 2 -+ 2 ¢'(r}.|rj,.), after it terminates.

Proof. Some Cj in ¢ collapse to some ¢ in ¥(r;) due to Scope (1, ¢) (see Lemma 21). As a
result, the number of Cj in ¢ is greater than or equal to that of Cy in ¢'(r;), hence |€| > ||,
where € denotes an index set of Cy in ¢. Also, some Cj, in ¢ shrink to some Cy in ¢'(r;),
hence Vk' € €3k € €[Cy, O Cy/]. Thus, ¢ O ¢'(r;). Likewise, ¢'(r;) D ¢'(r;,|r;), since ¢'(r;)
is decomposed into ¥ (r}, |r;) and ¢'(r;,|r;) via Scope (r;,,¢'(r;)). Therefore, ¢ 2 ¢'(r;) 2
@' (rjlrj) 2 ' (rj,lrj) 2 - 2 ¢ (rj,|r;,,), where ¢'(r;,|rj,,) = &' (rj, 15,505 75,). <

» Lemma 37. o(r;) E ¥(ri|r;), as well as ¥(r;) = (rs|r;), after the scan terminates.

Proof. ¢ 2 ¢/(r;) due to Lemma 36. Scope (r;, ¢) constructs ¢(r;), while Scope (r;, ¢'(r;))
constructs ¢ (r;|r;). Therefore, 1(r;) 2 ¢ (r;|r;). Because ¥(r;) = T, ¢(r;|r;) = T, hence
W(r;) E (ri|ry) (see Figure 2), that is, (r;) entails (r;|r;), where ¥(r;) =1 Arj A ATy
and ¢(r;|rj) = ri A--- Ary. Note that r; & ¢(r;|r;), because r; ¢ Cy, for any Cy, € ¢'(r;), as
j ¢ £ (r;) and j € £(r;) due to Lemma 32. Moreover, r; - 9(r;) follows from r; F ¢(r;) (see
Lemma 21), hence 9(r;) F ¢(r;|r;) from ¢ (r;) E ¥(r;|r;), that is, ¥(r;) proves ¢(r;|r;). <
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» Lemma 38. ¢(ri|r;), ¥(rilrj,rj,), ..., ¥(rilrj, v, ... 75,.) holds for every j € £, and for
every i € £'(r;), i € £ (rj,|r;),...,i € &(rj, |15, 7415 -.75), after the scan terminates.

Proof. Recall that Scan (¢s) terminates. As a result, ¢ = ¥ A ¢. Let ¢ = o, that is, £:= £é
(see also Note 27). Then, the scope ©(r;) holds for every i € £ and r; € {z;,%;}. Moreover,
&2 (rj) D¢ (rj|rj) 2 ¢ (rj,]rj,) 2 - 2 ¢'(rj,|r;,.) due to Lemma 36 for any j € £, and
e L(rj),....gn€ L(rj,|rj). Thus, ¥(r;) D Y(r|r;),..., (1) 2 Y(rilrj,...,r;,). Note
that ¢ (r;) 2 ¥(r;|rj, r;,) due to Scope (r;,d'(rj,|r;)), hence ¥ (r;) & ¥(r;|r;, r;, ). Therefore,
any (r;|r;), Y(ri|lrj, i), ..., (5|1, 75, ..., 75,,) holds, which generalizes Lemma 37. <

» Theorem 39 (Unsatisfiability). r; is incompatible due to ¥ ¢(r;) iff ¥ s(r;) for some s.
» Corollary 40 (Satisfiability). F,¢ iff the scope ¥(r;) holds for every i € £ and r; € {;,T;}.

Proof. (rj|rj), ¥(ri,|ri), - .. ¥(rj, |, ) defined over ¢'(r;) are disjoint due to Lemma 35
such that ¥(rj,|r;), Y5175 ), - -, (7, |74, ) hold by Lemma 38 for any j € £, j; € £'(r;),
Jo € & (riy|ri), - jn € £ (rj,,|75,)- As aresult, ¢/(r;) is composed of (.) both disjoint and
satisfied, thus ¢'(r;) is satisfied, hence unsatisfiability of ¢’ (r;) is ignored to verify ¥ ¢4(r;).
Therefore, Theorem 39 holds (see Proposition 28 and Note 29). Then, 1 (r;) = ¢(r;) due to
@' (r;) satisfied in ¢(r;) = ¥(r;) A ¢'(r;). Thus, Corollary 40 holds (see also Appendix A). <«

» Theorem 41. If ¥ p;s(r;) for some §, then ¥ ¢s(r;) for all s > 5, even if —r; holds, © # j.

Proof. See Note 25/26. ¥ o (r;) iff ¥ (s A1;) or ¥ ¢5(r;). Let ¥ (s Ar;) for some 3. Then,

¥ (YsArj) for all s > §, as 95 C ¢ (Remove L:2). Let ¥ ¢5(r;) by z; AT;. Then, T,V x; = 7,
thus 7; € ¢, for s > 5. Hence, ¥ (s Ar;) for all s > 5. Let —r; by ¥ ¢z(r;) for § < 3. Then,
s C s C s, and —r; = T; and 7; = 75, thus {7;,7;} C ¢, for s > 5. Hence, ¥ (s Ar; A1)
for all s > 5. Let —r; by ¥ ,(r;) for s > 5. Hence, # (¢ A1rj Ar;) for all s > 3. <

» Proposition 42. The time complexity of Scan is O(mn?).

Proof. OvrlEft, and Remove, takes 4m steps by (|€.7| X |C|) +]€’| = 3m+m. Scope takes
ndm steps by [¢s(r;)| x 4m. Then, Scan takes n?4m steps due to L:1-3 by |£¢| x [h5] x 4m,
as well as 8n?m + 8nm steps due to L:4-8 by 2|£¢| x (4nm + 4m). Also, the number of the
scans is § < |£¢| due to Remove L:6. Therefore, the time complexity of Scan is O(nm). <«

» Example 43. Let p = {{1331475}, {x3,x¢, Tr}, {1416,77}} Let Scope (x3, ¢) execute
first in the first scan, which leads to the reductions below over ¢ due to x3. Note that 1) = (.
d(x3) = (3O x4OTs5) A (23 O 26 O Tr) A (T4 © T O T7) A w3
$3:>( )A(:Eg/\EGAZC7)A(ZC4®ZE6®E7)A$3
54:>(m3 Af4/\:€5)A(:C3/\T<;/\ZE7)A( x6®f7)Am3
Te = ( YA (23 A Tg A7) A( T7) A3
Because ¥ (1/1(353) =23 A AT4 NT5 ANTg NT7 A f7), xg is incompatible, hence T3 is necessary,
i.e., 7x3 = T3. Thus, ¢ = @2 by (23 © 24 O T5) — (24 © T5) and (z3 © 26 O T7) — (6 O T7).

x3 N Ta N\ Ts

xr3 N Ta N\ Ts

As aresult, o = (24 O T5) A (16 ©T7) A (24 © 6 ©T7) A T3. Let Scope (x5, d2) execute next.
d2(z5) = ( 24OTs)A( 26 OTr)A (x4 Oz O@T7) A T5
x5 = ( x4 IN( 26 OQT7) A (24 @26 O T7) A 5
x4 =>( x4 YN 26 OQT7) A (za ANTs A7) A s
Te = ( x4 YA ( T7) A (Ta AN T N x7) A x5
Because ¥ (wg Z5) = X4 NT7r NTg A7 ATz A a:5) x5 is removed from ¢o, i.e., 7x5 = Ts.

Thus, @2 — 3 by (24 ©T5) (T4 ATs5), where p3 = (T4 A\Ts5) A (26 OT7) A (14 © 06 O T7) A T3,
and T4 leads to the next reduction by (x4 @xﬁ @%) (xf; ®Z7). Then, Scan (<p4) terminates,
and @4:§3/\f4/\f5/\(1‘6®f7) that is, 1/}/\¢, andw = {.733,$4,ZIJ5} anqu {{$6,$7}}
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In Example 43, if Scope (5, ¢) executes first, then ¢)(x5) = x5 becomes the scope, and
&' (x5) = (23 O 24) A (23 O 26 © Ty7) A (4 © 26 © T7) becomes beyond the scope of x5 over ¢.
Then, x5 is compatible (in ¢) due to Theorem 39, since ¥ (z5) holds, while it is incompatible
due to Proposition 28, since ¥ ¢'(x5) holds. On the other hand, the fact that ¥ ¢’(x5) holds
is verified indirectly. That is, incompatibility of x5 is checked by means of 1)s(x5) for some s.
Then, x5 becomes incompatible (in ¢ ), because ¥ 15 (x5) holds, after ¢ — @9 by removing
x3 from ¢ due to ¥ ¢(z3). As a result, # ¢'(x5) holds due to —z3. Thus, there exists no
r; such that ¥ ¢/(r;), when the scan terminates, because ¢ (r;) holds for all r; in ¢, hence
(r;|r;) holds for all r; in ¢'(r;), after each r; is removed if ¥ ¢)5(r;) (see also Figures 1-4).

3.4 Construction of a satisfiable assignment by composing scopes

= ’(/AJ A quS, when Scan (¢;z) terminates. Let 1) := 1/3 and ¢ := (;AS, ie., £:= £4. Then, F,¢ holds
by Corollary 40, where « is a satisfiable assignment, and constructed by Algorithm 5 through
any (40,141,792, - - -, bm, in) over £ such that o = {(ri,), Y(riy|7ig)s 0 (rigriy), - - s 0 (ra, |74, ) }-
Thus, ¢ is decomposed into disjoint scopes 1, V(14 ), Y (riy|Tig)s W (Tig|Tiy )y - -y 0 (ri, |74,,) (see
Note 26, and Lemmas 33-34). Recall that any scope 9(.) denotes a minterm by Definition
2/3, and that Scope (4, ¢) constructs ¢ (r;) and ¢'(r;) to determine a satisfiable assignment,
unless ¢ collapses to a unique assignment, that is, unless ¢ = o = 1[) See also Appendix A
to determine a satisfiable assignment without constructing v(r;|.) by Scope (ri, ¢'(.)).

Algorithm 5 > Construction of a satisfiable assignment o over ¢, £ := £¢ and ¢ == ¢

Pick j € £, © The scope 9 (r;) and beyond the scope ¢'(r;) for all i € £ are available initially

a s Y(ry); £ L= L(ry); ¢+ ¢'(r;);

repeat
Pick i € £; Scope (r;, ¢); > It constructs ¥(r;|r;) and ¢ (r;|r;) with respect to ¢'(r;)
a4 aU(ry); > (r:) = (r;|r;), because ¥(r;) is unconditional with respect to ¢ updated
L+ £—L(ry); > £+ £ (rilrj) due to the partition {S(Tj)7£(7'i|Tj), S’(v'i\rj)} over £
¢+ ¢'(r;); © ¢ (ri) == ¢'(rilr;), because ¢'(r;) is unconditional with respect to ¢ updated

until £ =10

return o; > (i, 7, ) = O(ri, |75, ity - -, Ti, ) (Se€ also Appendix A)

» Definition 44. Let <<ri1,1, Tis 1y Tig 1)y (71,25 72,2 Tig,2)s -+ <Tu1,m,7“u2,m,7“u3,m>> be in as-
cending order with respect to the index set £. If 13 < g1 for any (T4, &, Vs ki Tag k) aNd aNY
(91 k15 Tya ket 15 Tyg k1) then '@ U o = ¢ and '¢ NI = O such that Cy, € ‘¢ and Clq1 € 7.

» Note. ‘¢ and ¢ form a partition of ¢, hence their satisfiability check can be independent.

» Example 45. Let ¢ = (21 O T2 © 26) A (23 © 24 O Tp) A (23 © 26 © T7) A (T4 O 26 © T7),
2 = (x5 © 9 © T10), and 3¢ = (211 © T12 © x13) to form o ="1pNPN (see Definition 44).
Then, Scan (p,4) returns ¢ is satisfiable. Therefore, ¢ = 1/1 A (;5, where ) = ¢ =T3A\NTy ANT5
and ¢ = ¢ = (210Ta O x6) A (26 ©T7) AN20 N3¢ (see Example 43). Then, « is constructed by

composing 9(.) based on ¢'(.) belovv7 where £v= {3,4,5} and £:= £+ ={1,2,...,13} — &=

1/)(:81) =21 AN22ANT6 ANT7 & (25/(:61) =20 N3¢
P(x2) = T2 & @' (z2) = (x10m6) A (w6 © T7) A 2P N3¢
W(T2) = TIAT2 AT AT7 & &' (T2) = 2P N3¢

’g[)(xe.) = 1/}(1'7) =Ti1Ax2ANxg N7y & Qﬁ,(l'@) = ¢/(ZE7) =20 N3¢

¥(T6) = Y(T7) = Te A7 & ¢'(Ts) = ¢'(T7) = (210 T2) AN2P N3¢
Y(xs) = g AN To A Z10 & (i)l(l‘g) = (210T2 0 z6) A (6 OT7) A 3¢
Y(x11) = T11 A T12 AT13 & ¢/(I11) = (210T2 0 z6) A (6 ©T7) A 20
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» Example 46. A satisfiable assignment « is constructed by an order of indices over £, £ =
{1,...,13} — £¥ (Example 45), such that r; := x; for any ¢ (r;) throughout the construction.
First, pick 6 € £. As a result, a < ¢(zg) and £ < £ — £(x¢), where ¢(zg) = {T1, z2, T6, x7},
L(xg) = {1,2,6,7}, and £ + {8,9,10,11,12,13}. Then, pick 8, hence o + o U (xs|zg),
where ¢(zs|zg) = {xs,To, x10}. Also, £ + £ — L(xg|zs), where £(zs|zg) = {8,9, 10}, hence
£« {11,12,13}. Finally, pick 11. Therefore, o < a:U (11|76, xs) such that £ < @, which
indicates its termination. Note that Scope (1‘117 ¢'(x8|x6)) constructs ¢ (z11|xg, €s), in which
@' (zg|Tg) = *¢, and that ¢’ (z11|Tg,xs) = 0 iff £+ 0. Note also that ¢ (zs|zs) = 1(xs) and
P(x11]xe, xg) = ¥(x11), since ¢, 2¢ and 3¢ are disjoint (see Definition 44). Consequently,
Algorithm 5 constructs a = {¢)(zg), ¥ (zs|zs), 1 (z11]x6, xg)}. Note that ¢ is decomposed into
¥, Y(xg), Y(zs|zs), and ¥ (z11|xe, rs), which are disjoint (see also Note 27 and Lemma 34).

» Example 47. Let (2,1,8,11) be another order of indices in Example 45. This order leads
to the assignment {1, ¥ (x2), ¥ (x1]22), ¥(xs|xe, 1), (211|229, T1,28) } for ¢. This assignment
corresponds to the partition {Ew, {2},{1,6,7},{8,9,10},{11,12, 13}}7 where £»= {3,4,5}
(see also Note 26 and Lemma 33). Note that the scope ¥(x1) is constructed over ¢, and the
conditional scope ¥ (x1|z2) is constructed over ¢/ (x5), where ¢ D ¢/ (z3). Recall that ¢ == ¢.
Hence, ¥ (x1) E ¥(x1|x2), in which ¥(x1) = 21 A x2 A Tg A T7, while ¢(x1|xs) = 1 A Tg A T7.
Moreover, ¥(xg) F 1 (xs|ze, 1) due to ¢ D ¢'(x1|xs2), and ¥ (x11) E ¥(x11|2e, 1, 28) due to
d D ¢ (xs|ze, 21), where ¢ (x1]x2) = 20 A 3¢ and ¢’ (xg|xa, x1) = 3¢ (see Lemmas 36-38).

3.5 An lllustrative Example

This section illustrates Scan (¢s). Let o = ¢ = (21 © T3) A (21 © T2 @ x3) A (22 © T3), which
is adapted from Esparza [1], and denotes a general formula by Definition 13. Note that Cy =
{xl,fg}, CQ = {wl,fg,.’ﬂg}, and C3 = {.’Eg,fg}. Hence, ¢ = {1 2, 3}, and £ = £¢ = {L 2, 3}
Scan (p): There exists no conjunct in (the initial formula) . That is, ¢ is empty (L:1).
Recall that ¢ := @1, and that r; € {z;,Z;}. Recall also that nontrivial incompatibility of r;
is checked (1.:4-8) via Scope (r;, ). Moreover, the order of incompatibility check is arbitrary
(incompatibility is monotonic) by Theorem 41. Let Scope (1, ¢) execute due to Scan L:6.
Scope (1, ¢): Since ¥ (z1) 2 {x3, T3}, x1 is incompatible nontrivially (see Example 23).
Thus, T1 becomes necessary (a conjunct). Then, Remove (x1, ¢) executes due to Scan L:6.
Remove (71, ¢): €¥1= () by OvrlEft L:1. €%1= {1,2}, thus ¢*'= (21O T3) A (21O T2 © x3)
by OvrlEft L:7. As a result, (F1) = {T3} & ¢(—x1) = {{}, {Z2, z3}}, the effects of T; and
—z1. Note that Cy + 0. Then, g < 1 U {Z1} U(T;) (Remove L:2), and £¢ < £¢— {1} and
Lo Lo U {1} (L:4). Also, ¢y < d(—x1) A ¢, where ¢(—x1) = (T2 © x3) and ¢’ = (22 © T3)
(L:5). As a result, ¢ = T1 A T3, and ¢2 = (T2 © z3) A (x2 © T3). Note that Cy = {Ta, 23} and
Cy = {x2,%3}. Consequently, @2 = 12 A ¢2, and Scan (¢3) executes due to Remove L:6.
Scan (p2): €3 = {1,2} and £¢ = {2,3} hold in ¢3. Then, {z2,Ta} Nthy = 0 for 2 € L9,
while T3 € 15 for 3 € £¢ (L:1). As a result, T3 is necessary for satisfying s, hence T = —x3,
that is, 3 is incompatible trivially. Then, Remove (x3, ¢2) executes due to Scan L:2.
Remove (z3, ¢2): €5 = {2}, thus ¢3° = (12 ® T3), and €3 = {1}, thus ¢3° = (72 © x3).
As a result, U (T3) = {72} U {7} & ¢o(—as3) = {{}}, because Cy = {7} consists in U (T3),
rather than in ¢o(—x3) (see OvrlEft 1:9). Hence, 13 < 12 U {T3} Un(T3), £« £¢ — {3},
and £« £U {3}, i.e., £2 = {2}. Therefore, ¢35 = {{}}, thus €3 =0, and 3 = T1 A T3 A To.
Scan (p3): To € 13 for 2 € £2 over ¢3. Then, Remove (x4, ¢3) executes due to Scan L:2.
Remove (2, ¢3): Us(T2) = 0 & P3(—z2) = {{}} due to OVr1Eft (%2, ¢3), because €52 =0
and €32 = (), since €3 = (. Hence, £¢ + {2} — {2} and ¢4 < ¢3. Then, Scan (p4) executes.
Scan (¢4) terminates: ¢ =1 = Ty AT3 A To (L:9), and ¢ collapses to a unique assignment.
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Let Scope (23, ¢) execute before Scope (21, ¢) due to Scan 1.:6 (see Theorem 41).

Scope (23, ¢): ¥(z3) < {23} and ¢, < ¢ (L:1). Then, €73 = {2} due to OVrlEft (x3, ¢.)
L:1, hence ¢% = (1O Ty ® x3). As a result, ¢y <« {T1, 22} and , (23) < s (23) Ucy (1:3,5).
Moreover, €22 = {1,3} (L:7), hence ¢*2 = (21 ©T3) A (2 ® T3). Then, Cy <+ {z1,73} — {T3},
1[&(1’3) — ’(Z;*(xg) @] Cl, and C1 «— 0. Likewise, Cg «— {1’2,?3} — {fg}, ’(Z;*(xg) — ’(E*((E3) @] Cg,
and C3 < ) (OvrlEft 1:8-9). Consequently, 1 (x3) < {T1, 72,21} & ¢u(—T3) + ¢T3 (L:11).
Note that ¢72 = {{},{}}, since Cy = C3= 0. Then, ¥(z3) < t(z3) U {3} U Uy (23) due to
Scope L:4, hence ¢ (x3) = {23, T1, 22, 21}. Since (x3) 2 {T1, 21} (L:5), x3 is incompatible
nontrivially, i.e., xs = T1 A x1 and —~x3 = Ts. Then, Remove (x3, ¢) executes due to Scan L:6.

Remove (73, d): ¢™* = (210 T3) A (22 ® T3) due to €73 = {1,3}, and ¢™* = (v, O Ta © x3)
due to €%3 = {2}. Then, OvrlEft (T3, ¢) returns (Ts) = {T1,T2} & ¢(—x3) = {{z1,72}}
(Remove L:1), 92 <~ U {ZT3} U(Ts3) (L:2), and £2 + £2 — {3} and £¥«+ L£+U {3} (L:4). As
a result, 1y = T3 ATy A Ta. Moreover, ¢o < ¢(—x3) A ¢ (1:5), in which ¢(—z3) = (210 T)
and ¢’ is empty. Therefore, o = 19 A ¢o. Note that C| = {1, T2}, hence €, = {1}. Recall
that £¢ = {1,2}, and that £+ = {3}. Then, Scan (y2) executes due to Remove (z3, p) L:6.

Scan (¢2): £¢ = {1,2} such that Tz € 12 and T; € ¥2. Thus, T2 and T; are necessary,
hence x5 and x; are incompatible trivially. Then, Remove (x1, ¢2) and Remove (2, =) execute.

The fact that the order of incompatibility check is arbitrary (Theorem 41) is illustrated as
follows. Scope (x3,¢) returns z3 is incompatible nontrivially, since x5 = T1 A 1. Therefore,
=TV -1 = —x3, hence 1V T = Ts. Then, T3 = T due to C; = (21O T3), and T = —xy.
Thus, x; is still incompatible, but trivially (Cf. Scope (1, qb)), even if -3 holds. That is, x1
the nontrivial incompatible in ¢ due to x1 = T3 A x3, i.e., 7T3V —x3 = —x1, is incompatible
trivially in 1y due to Ty = —x1. See Scan (p2) above. Also, since z3 ¢ Cy, and T3 ¢ Cy in ¢
for any s > 2, ¥ ¢, (x3) for all s > 2, even if any r; is removed from some Cy, in ¢, s > 2.

4 Conclusion

X3SAT has proved to be effective to show P = NP. A polynomial time algorithm checks
unsatisfiability of ¢(r;) such that ¥ ¢(r;) iff ¥s(r;) involves z; A T; for some s. Thus, ¢(r;)
reduces to ¥(r;). ¥(r;) denotes a conjunction of literals that are true, since each r; such that
¥ 1)s(r;) is removed from ¢. Hence, ¢ is satisfiable iff ¢(r;) is satisfied for any r; € {x;,Z;}.
Thus, it is easy to verify satisfiability of ¢ via satisfiability of ¥ (z1),¥(Z1),. .., ¥(z,), Y (Tn).
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A  Proof of Theorem 39/40

This section gives a rigorous proof of Theorem 39/40. Recall that the ¢4 scan is interrupted
iff 15 involves x; A T; for some 7 and s, that is, ¢ is unsatisfiable, which is trivial to verify.
Recall also that the ¢s scan terminates iff ¢3(r;) = T for any i € £, r; € {x;,T;}. Moreover,
@ = 1) A ¢ such that ¢) = T (see Scan L:9 and Note 27). Therefore, when the scan terminates,
satisfiability of  is to be proved, which is addressed in this section. Let ¢ = q@, ie., £:= £
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» Theorem 48 (cf. 39-40/Claim 1). These statements are equivalent: a) ¥ ¢(r;) iff ¥ s(r;)
for some s. b)(r;) =T for any i € £. ¢)Ead by o = {b(riy), ¥V(riy|7ig)y - - -, W (i, [75,,) }-

Proof. We will show a = b, b = ¢, and ¢ = a (see Kenneth H. Rosen, Discrete Mathematics
and its Applications, 7TE, pg. 88). Firstly, a = b holds, because a holds by assumption (see
Note 29 and Scope L:5), and b holds by definition (see Scan L:9). Moreover, ¥(r;) F 1(r;|r;)
due to Lemma 37/38 for every r; € {z;,T;} and ¢ € £. Next, we will show b = c¢. We do this
by showing that satisfiability of ¢ is preserved throughout the assignment a construction,
a = {(ri,), V(ri,|rig)s - -, Y(1i, |13, ) }, because a partial assignment 1 (r;|r;) is constructed
arbitrarily through consecutive steps having the Markov property. Thus, construction of
¥ (r;|rj) in the next step is independent from the preceding steps, and depends only upon
¥(r;|ri) in the present step (see also Lemma 33/34). The construction process is as follows.

Step 0: Pick any r;,in ¢. The reductions due to r;, partition £ into £(r;,) and £'(r;,).
Note that ig € £ and ip € £(r;,). Hence, ig ¢ £'(r;,) by Lemma 32. Moreover, ¥(r;,) holds
such that ¢(r;,) = ¥(ry) A ¢ (14,) in Step 0. Then, pick an arbitrary r;, in ¢'(r;,) for Step 1.

Step 1: £(r;,) N L' (r;,) = 0 in Step 0, and the reductions due to r;, over ¢'(r;,) partition

£ (r;,) into and Thus, £(7,) N = (), since £/(r,) 2
As aresult, £ is partitioned into £(ry,), £(r4, |7, ), and £'(r4,|r;,) due to r;, and r;,. Moreover,
¥ (ri,|ri,) holds due to Lemma 37/38. Thus, ¥(r;,) and are disjoint, as well as

true. Therefore, 1(r;,) A )(ry,|ri,) = T, and (i, 1i,) = (i) AY(rig|rig) A @ (i [7ig)-
Step 2: The preceding steps have partitioned £ into £(r;, ) U £(ry, |7, ) and £'(r4,|rs, ), and
iy i @' (14, |1, ) partitions £ (r;, |75, ) into £(ri,|ri,) and £ (ry,|ri,), Le., £(ririg) 2 L(7i,|74,)-
Then, (£(ri,)UL(ri,|7i)) N&(riy |riy) = 0. Thus, ¢(r;, ) AU (1, |, ) and 1(ry, |, ) are disjoint,
as well as true. Therefore, ¢(1iy,7i,, Tiy) = Y(7ig) AU (Tiy T3 ) AV (Tiy T3, ) AQ (135 ]74,), in which
'(/J(Tio) A '(/)(Tillrio) A 1p(ri2|’ri1) =T. Note that a 2 {7#(7"1‘0)71/)(7“1‘1\7"1'0)7 ¢(Ti2|7”i1)}7 and that £
is partitioned into £(r;,), £(ri,|74,), £(riyrs, ), and £ (ri,|ri, ) such that &' (r;,|ry,) # 0.
Step n: r;, partitions £'(r;,_ |r;,) into £(r;, |r;, ) and £'(r;, |r;,,) such that £ (r;, |r;,,) = 0.
Then, £(r;,) U L(ri,|rig) U~ UL(r;, |ry,) and £ (r;, |r;,), hence £(r;, |r;,,), form a partition
of £. Therefore, ¥(riy) AP(riy|rig) A+ Ap(rs, |ri,) and ¥(r;, |rs,,) are disjoint, as well as
true. Thus, & = &(rig, .-, 74,) = (1) ATy |Tig) Ao Ap(rg, ra,) Ap(rs, |rs,,) is satisfied.
Consequently, ¢ is composed of ¥(.) disjoint and satisfied, thus F,¢, hence b = ¢ holds.
Finally, we show ¢ = a. 7; A ¢ transforms into 1 (r;) A ¢/(r;), thus (r; A ¢) = ((r;) A ¢ (ry)).
Since ¢, and ¥(r;) for any r; are satisfied, ¢'(r;) for any r; is satisfied. Hence, unsatisfiability
of 14(r;) for some s is necessary and sufficient for the unsatisfiability of ¢4(r;) for any s. <«

» Note. The assignment a construction is driven by partitioning the set £'(.) such that
L4 £— L(ry,) in Step 1, and £ < £ — L(r;,_,|ri,_,) for in € &' (r;,_,|ri,_,) in Step n > 2.
» Note. 9(r;) = ¢(r;) by Theorem 48. Thus, the formula ¢ = A, _, C transforms into the
formula ¢’ = \;c¢ Ci, where Cp = (r; © 7 © 1) and C; = (¢(z;) & ¥(;)). See also Note 27.

» Note (Construction of «). In order to form a partition over the set ¢, « is constructed such
that o (ri, |riy) = P(ri,) = P(riy), and (ri, |ri, ) = () = ((ri) U U(ri,_,|ri, )
for n > 2. On the other hand, if the construction involves no set partition, then a = J 1 (r;)
for i = (ig,41,...,4n), where ig € £, i1 € £'(riy), ..., in € L' (rs, |14,), thus rip <1y, <+ <715,
Note that there is no need to construct ¢'(r;) in Scan/Scope L:9 (cf. Algorithm 5).

For instance, if Example 45 involves no set partition, then o = {¢(Z7), ¥ (z2), ¥ (x1)}, in
which w(f7) = {T7,f6}, w(l‘g) = {.%‘2}, and ’lﬁ(lj) = {.Z‘l,.ﬁg,fﬁfﬁ}. Also, Ty < x9 < x1 due
to 2o € ¢'(T7) and x1 € ¢ (x2|T7). Moreover, ¥(T7), ¥ (x2|Tr), and ¥ (xq|x2) form a partition
over the set ¢, where ¢ (x3|T7) = ¥(w2) — 1(T7) and Y(21|22) = (x1) — (Y (22|T7) Uh(T7)).
As a result, a = ¢(f7,$2,561) = {f7,fﬁ} U {1‘2} U {xl} such that {j?,fﬁ} N {ZEQ} n {1‘1} =0.
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