
EasyChair Preprint
№ 1734

On the Tractability of Un/Satisfiability

Latif Salum

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 17, 2020

On the Tractability of Un/Satisfiability
Latif Salum
Department of Industrial Engineering, Dokuz Eylül University, Izmir, Turkey
latif.salum@deu.edu.tr & latif.salum@gmail.com

Abstract
This paper shows P = NP via exactly-1 3SAT (X3SAT). Let φ =

∧
Ck be some X3SAT formula.

Ck = (ri� rj � ru) is a clause denoting an exactly-1 disjunction � of literals ri, ri ∈ {xi, xi}. Ck is
satisfied iff (ri∧ rj∧ ru)∨ (ri∧ rj∧ ru)∨ (ri∧ rj∧ ru) is satisfied, because any Ck contains exactly one
true literal by the definition of X3SAT. Let φ(rj) := rj ∧ φ. Then, rj leads to reductions due to � of
any Ck = (xi� rj� xu) into ck = xi∧ rj∧ xu, and any Ck = (rj� ru� rv) into Ck′ = (ru� rv). Thus,
φ(rj) := rj ∧ φ transforms into φ(rj) = ψ(rj) ∧ φ′(rj), unless 2 ψ(rj)—unless ψ(rj) involves some
contradiction xi ∧ xi. Then, ψ(rj) and φ′(rj) are disjoint, where ψ(rj) =

∧
(ck ∧ Ck′) for |Ck′ | = 1,

and φ′(rj) =
∧

(Ck∧Ck′). Also, it is easy to verify 2 φ(rj), because it is trivial to verify 2 ψ(rj), and
redundant to verify 2 φ′(rj). Proof is sketched as follows. ψ(ri) is true, and ψ(ri) � ψ(ri|rj) holds,
hence ψ(ri|rj) is true, because any rj such that 2 ψ(rj) is removed from φ. Then, rj consists in ψ
to transform φ into ψ ∧ φ′. If ψ involves xj ∧ xj, then φ is unsatisfiable. Otherwise, φ is satisfiable,
since ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim) compose φ such that each ψ(.) is disjoint and satisfied. Then,
ψ(ri) is true, φ is satisfied, and (ri∧ φ) ≡

(
ψ(ri)∧ φ′(ri)

)
. Thus, φ′(ri) is satisfied. Consequently, it

is redundant to check if 2 φ′(ri) to verify if 2 φ(ri). The complexity is O(mn3). Therefore, P = NP.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases P vs NP, NP-complete, 3SAT, one-in-three SAT, exactly-1 3SAT, X3SAT

Acknowledgements I would like to thank Javier Esparza, Anuj Dawar, Avi Wigderson, Paul Spirakis,
and Éva Tardos, as well as anonymous reviewers for their comments and contributions throughout
the development of the paper since 2008. I would like to thank Csongor Csehi from the Building
Bridges II Conference. I would like to thank the faculty of the Department of Mathematics of Dokuz
Eylül University, as well as my colleagues at the Industrial Engineering Department.

1 Introduction: Effectiveness of X3SAT in proving P = NP

P vs NP is the most notorious problem in theoretical computer science. It is well known that
P = NP, if there exists a polynomial time algorithm for any one of NP-complete problems,
since algorithmic efficiency of these problems is equivalent. Nevertheless, some NP-complete
problem features algorithmic effectiveness, if it incorporates an effective tool to develop an
efficient algorithm. That is, a particular problem can be more effective to prove P = NP.

This paper shows that one-in-three SAT, which is NP-complete [2], features algorithmic
effectiveness to prove P = NP. This problem is also known as exactly-1 3SAT (X3SAT).
X3SAT incorporates “exactly-1 disjunction �”, the tool used to develop a polynomial time
algorithm. It facilitates checking incompatibility of a literal rj for satisfying some formula φ.
When every rj incompatible is removed, φ becomes un/satisfiable. Thus, each ri becomes
compatible to participate in some satisfiable assignment. Then, an assignment is constructed.

If 2 φ(rj), that is, φ(rj) is unsatisfiable, then rj is incompatible for satisfying φ, where
φ(rj) := rj ∧ φ, and rj ∈ {xj , xj}. The φ scan algorithm, introduced below, “scans” φ by
checking compatibility of any ri in satisfying φ, and removing each incompatible rj from φ.

Let φ = C1∧ · · · ∧ Cm be any X3SAT formula such that a clause Ck = (ri� rj� ru) is
an exactly-1 disjunction � of literals ri, hence satisfied iff exactly one of {ri, rj , ru} is true.
Note that a clause (ri∨rj ∨ru) in a 3SAT formula is satisfied iff at least one of them is true.

https://orcid.org/0000-0001-5660-1938
mailto:latif.salum@deu.edu.tr & latif.salum@gmail.com

2 On the Tractability of Un/Satisfiability

Incompatibility of each rj is checked by a deterministic chain of reductions of clauses Ck
in φ(rj). Let rj := xj. Then, the reductions are initiated by xj, and followed by ¬xj, because
xj⇒ ¬xj. That is, each (xj� xi� xu) collapses to (xj∧ xi∧ xu) due to xj⇒ xj∧¬xi∧¬xu,
since there is exactly one (negated) variable that is true in any Ck by the definition of X3SAT.
Also, each (xj� xu� xv) shrinks to (xu� xv) due to ¬xj. As a result, xj transforms φ into
φ(xj) = xj∧ xi∧ xu∧ φ∗, and xi∧ xu proceeds the reductions in φ∗, which involves (xu� xv).

The reductions over φs(xj) terminate iff xj∧φs transforms into ψs(xj)∧φ′s(xj) such that
ψs(xj) and φ′s(xj) are disjoint, where s denotes the current scan, and ψs(xj) is a conjunction
of (negated) variables that are true. They are interrupted iff ψs(xj) involves some xi ∧ xi,
thus 2 φs(xj), and xj is incompatible. That is, 2 φs(.) is verified solely by 2 ψs(.) (Figure 1).

The reductions over φ terminate iff φ transforms into ψ∧φ′ such that ψ and φ′ are disjoint,
where ψ = x5∧ xn∧ · · · ∧ x2 (see Figure 1). Then, φ is updated, that is, φ← φ′. The φs scan
is interrupted iff ψs involves xi∧ xi for some s and i, thus 2 φ, that is, φ is unsatisfiable.

φ φ2 := φ(x5)
¬x5⇒ x5 for φ, if 2 ψ(x5)

φ2 φ3 := φ2(xn)
¬xn⇒ xn for φ2, if 2 ψ2(xn)

...
...

φs−1 φs := φs−1(x2)
¬x2⇒ x2, if 2 ψs−1(x2)

Figure 1 The φs scan: 2 φs(rj) is verified solely by 2 ψs(rj), and whether 2 φ′s(rj) is ignored

B Claim 1. It is redundant to check whether or not 2 φ′s(rj). That is, 2 φs(rj) iff 2 ψs(rj) for
some s. As a result, φ(ri) reduces to ψ(ri) due to φ(ri) = ψ(ri)∧φ′(ri). Then, ψ(ri) ≡ φ(ri).
Therefore, φ is satisfiable iff ψ(ri) is satisfied for any ri, that is, iff the scan terminates.

Sketch of proof. ψ(ri)/ψ(ri|rj) is constructed over φ/φ′(rj), thus ψ(ri) covers ψ(ri|rj), hence
ψ(ri) � ψ(ri|rj) holds. Because ψ(rj) and φ′(rj) are disjoint, ψ(rj) and ψ(ri|rj) are disjoint
(see Figure 2). Therefore, ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), and ψ(ri3 |ri0 , ri1, ri2) form disjoint
minterms ψ(.) =

∧
ri over φ such that ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), and ψ(ri3 |ri0 , ri1, ri2)

hold, because ψ(ri) is true for any ri (the φ scan terminates), and ψ(ri) � ψ(ri|.) holds. Thus,
φ is composed of ψ(.) that are disjoint and satisfied (see Figure 3), hence φ is satisfied. C

φ
ψ(ri)

φ(rj)
ψ(rj) φ′(rj)

φ′(rj) 3 ri
ψ(ri|rj) φ′(ri|rj)

Figure 2 Since ψ(ri) =
∧
ri is true and ψ(ri) ⊇ ψ(ri|rj), ψ(ri|rj) is true, hence ψ(ri) � ψ(ri|rj)

A satisfiable assignment α is constructed by composing ψ(.) that are disjoint and satisfied.
For example, α = {ψ,ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri0 , ri1), ψ(ri3 |ri0 , ri1, ri2)} (see Figure 3).

φ

ψ(ri1)
ψ(ri0) ψ(ri3)

ψ(ri2)

φ(ri0)
ψ(ri0) φ′(ri0)

φ′(ri0) 3 ri1
ψ(ri1|ri0) φ′(ri1|ri0)

φ′(ri1|ri0) 3 ri2
ψ(ri2 |ri0 , ri1) φ′(ri2 |ri0 , ri1)

φ′(ri2 |ri0 , ri1) 3 ri3
ψ(ri3 |ri0 , ri1, ri2)

Figure 3 ψ(ri1) � ψ(ri1|ri0), ψ(ri2) � ψ(ri2 |ri0 , ri1), and ψ(ri3) � ψ(ri3 |ri0 , ri1, ri2)

L. Salum 3

2 Basic Definitions

A literal ri is a variable xi or its negation xi, i.e., ri ∈ {xi, xi}. A clause Ck = (ri� rj � ru)
denotes an exactly-1 disjunction � of literals. Then, either xi = T or xi = T holds in Ck.

I Definition 2 (Minterm). ck =
∧
ri, and any ri in ck, called a conjunct, is true, thus ck = T.

I Definition 3 (X3SAT formula). ϕ = ψ ∧ φ such that ψ =
∧
ck and φ =

∧
Ck.

Where appropriate, Ck, as well as ψ, is denoted by a set. Thus, ϕ = ψ ∧ φ the formula,
that is, ϕ = ψ ∧C1∧C2∧ · · · ∧Cm, is denoted by ϕ = {ψ,C1, C2, . . . , Cm} the family of sets.

I Definition 4. Ck = (ri� rj� ru) is satisfied iff (ri∧ rj ∧ ru)∨ (ri∧ rj ∧ ru)∨ (ri∧ rj ∧ ru)
is satisfied, since any clause Ck contains exactly one true literal by the definition of X3SAT.

I Definition 5 (Incompatibility). ri in some Ck is incompatible, denoted by ¬ri, iff ri leads to
a contradiction xj∧xj, that is, ri∧ϕ is unsatisfiable, hence ri is removed from every Ck in φ.

I Remark. Each xi and xi in φ is assumed to be compatible, thus no Ck contains ¬xi, or ¬xi,
while any ri in ψ is necessarily true by Definition 2/3, thus denotes a conjunct, to satisfy ϕ.
I Note 6. If ri ∈ ψ, then ri⇒ ¬ri, that is, ri becomes incompatible, and is removed from φ.
If ri⇒ xj∧xj, hence ¬xj∨¬xj⇒ ¬ri, then ¬ri⇒ ri, that is, ri becomes a conjunct (ri ∈ ψ).

I Definition 7. L = {1, 2, . . . , n} denotes the index set of the literals ri, C = {1, 2, . . . ,m}
denotes the index set of the clauses Ck, and Cri = {k ∈ C | ri ∈ Ck} denotes Ck containing ri.

I Example 8. Let ϕ̂ = (x11� x31) ∧ (x12 � x22 � x32) ∧ (x23 � x33 � x43) ∧ x4. Note that
C3 = (x2 � x3 � x4), and that x4 is a conjunct (necessarily true) for satisfying ϕ̂. Also,
C = {1, 2, 3}, Cx1 = {1, 2}, and Cx4 = {3}. Let ϕ = (x1�x3)∧ (x1�x4�x2)∧ (x2�x3)∧x4.
Then, Cx4 = ∅, and C1 = {x1, x3}, C2 = {x1, x4, x2} and C3 = {x2, x3}, while ψ = {x4} in ϕ.

I Definition 9 (Collapse). A clause Ck = (ri� xj� xu) is said to collapse to the minterm
ck = (ri ∧ xj ∧ xu), thus ri /∈ Ck, if ri is necessary, denoted by (ri� xj� xu)↘(ri ∧ xj ∧ xu).

I Definition 10 (Shrinkage). A clause Ck = (ri� rj� ru) is said to shrink to another clause
Ck′ = (rj� ru), if ¬ri (ri the incompatible is removed), denoted by (ri� rj� ru)� (rj� ru).

I Definition 11 (Truth/Compatibility of ri over φ). φ(ri) = ri∧φ for any ri ∈ Ck and Ck ∈ φ.

I Note 12 (Reduction). The collapse or shrinkage denotes a reduction of Ck. If ri ∈ ψ, then
ri leads to reductions over φ, which reduces ϕ, ϕ→ϕ′. Hence, ϕ→ϕ′ iff Ck↘ ck or Ck�Ck′.
Since ri is necessary for φ(ri), it leads to reductions over φ(ri). Thus, (ri�rv�ry)� (rv�ry)
and (ri�xj�xu)↘(ri∧xj∧xu), because ri⇒¬ri such that ri⇒ ri∧xj∧xu holds over any
Ck = (ri� xj� xu), since ri⇒ ¬xj∧¬xu, thus ¬xj⇒ xj and ¬xu⇒ xu (see Definition 4/5).

I Definition 13. φ denotes a general formula if {xi, xi} * Ck for any i ∈ L and k ∈ C, hence
Cxi∩Cxi = ∅. φ denotes a special formula if {xi, xi} ⊆ Ck for some k, hence Cxi∩Cxi = {k}.

I Lemma 14 (Conversion of a special formula). Each clause Ck = (rj� xi� xi) is replaced
by the conjunct rj so that Cxi ∩ Cxi = ∅ for any i ∈ L, if φ =

∧
Ck is a special formula.

Proof. φ is unsatisfiable due to rj⇒ xi∧ xi. Then, xi∨ xi⇒ rj. That is, rj is necessary for
satisfying Ck = (rj� xi� xi), which is sufficient also, thus rj is equivalent to Ck. Therefore,
each clause Ck = (rj� xi� xi) is replaced by the conjunct rj so that Cxi ∩ Cxi = ∅. J

I Example 15. φ = (x1� x2� x2) ∧ (x1� x3� x4) ∧ (x2� x1) is a special formula due to
C1 = {x1, x2, x2}. Note that Cx2 ∩ Cx2 = {1}. Then, φ is converted by replacing the clause
C1 with the conjunct x1. As a result, φ← x1∧ (x1� x3 � x4) ∧ (x2� x1). Likewise, if φ =
(x3�x4�x4)∧ (x3�x2�x2)∧ (x2�x1), then φ← x3∧x3∧ (x2�x1), which is unsatisfiable.

4 On the Tractability of Un/Satisfiability

3 The ϕ Scan

This section addresses the ϕ scan. Section 3.2 introduces the core algorithms. Section 3.3
tackles satisfiability of ϕ, and Section 3.4 tackles construction of a satisfiable assignment.

ϕs for s > 2 denotes the current formula at the sth scan/step such that ϕ := ϕ1, after ¬rj
holds in φs−1 (see Definition 5). Then, φris = (rik1� ru1k1� ru2k1)∧ · · · ∧ (rikr� rv1kr� rv2kr)
denotes the formula over clauses Ck 3 ri in φs, where ri ∈ {xi, xi}. Hence, Cris = {k1, . . . , kr}.
�αϕ denotes that the assignment α = {r1, r2, . . . , rn} satisfies ϕ, and 2 ϕ denotes ϕ is

unsatisfiable, while ψ � ψ′ denotes ψ′ is the logical consequence of ψ—as ψ = T, ψ′ = T.
ψ̃s(ri) is called the local effect of ri and φ̃s(¬ri) is the effect of ¬ri. ϕ̃s(ri) denotes its

overall effect such that ϕ̃s(ri) = ψ̃s(ri) ∧ φ̃s(¬ri), specified below. Also, ψ̃s(ri) =
∧

(ck ∧ Ck)
such that |Ck| = 1. Moreover, φ̃s(¬ri) =

∧
Ck such that |Ck| > 1, or φ̃s(¬ri) is empty.

3.1 Introduction: Incompatibility and Reductions
Example 16 (17) introduces incompatibility (reductions over φ), which drive the ϕ scan.

I Example 16. Consider φ(x1) over ϕ= φ= (x1� x3)∧ (x1� x2� x3)∧ (x2� x3). Thus, x1
is necessary for φ(x1), hence x1 � ψ̃(x1) such that ψ̃(x1) = (x1∧ x3)∧ (x1∧ x2∧ x3). That is,
x1⇒ ¬x3 holds over C1 = (x1� x3), hence ¬x3⇒ x3. Likewise, x1⇒ ¬x2 ∧ ¬x3 holds over
(x1� x2� x3), hence ¬x2⇒ x2 and ¬x3⇒ x3 (see Note 12). Thus, ϕ̃(x1) = ψ̃(x1) ∧ φ̃(¬x1)
becomes the overall effect, where φ̃(¬x1) is empty. Then, the reductions initiated by x1 over
φ(x1) are to proceed due to x2. Nevertheless, they are interrupted by x3 ∧ x3 due to ψ̃(x1).
Hence, φ(x1) = ϕ̃(x1)∧ (x2� x3) is unsatisfiable, thus x1 is incompatible for ϕ, i.e, ¬x1⇒ x1.

I Example 17. x1 initiates reductions over φ (Note 12). Then, ψ̃(x1) = x1∧ x3, φ̃(¬x1) =
(x2�x3), and ϕ̃(x1) = ψ̃(x1)∧ φ̃(¬x1) to construct ϕ2 = ϕ̃(x1)∧(x2�x3). Note that (x2�x3)
is beyond ϕ̃(x1) the overall effect. Note also that {x3} /∈ φ̃(¬x1), while x3 ∈ ψ̃(x1), because
C1� c1, since φ̃(¬x1) contains no singleton. Then, ϕ2 is the current formula due to the first
reduction by x1 over φ. Thus, ϕ→ϕ2 due to (x1�x3)� (x3) and (x1�x2�x3)� (x2�x3).
As a result, ϕ2 = x1∧x3∧ (x2�x3)∧ (x2�x3), in which ψ2 = {x1, x3} denotes the conjuncts,
and C1 = {x2, x3} and C2 = {x2, x3} denote the clauses. Note that Cx3

2 = {1} and Cx3
2 = {2}.

Then, x3 leads to the next reduction over φ2: ψ̃2(x3) = (x2 ∧ x3), φ̃2(¬x3) is empty, and
ϕ̃2(x3) = ψ̃2(x3)∧ φ̃2(¬x3). Thus, ϕ2→ϕ3 due to (x2� x3)↘(x2∧ x3) and (x2� x3)� (x2).
Then, ϕ3 = ϕ̃(x1) ∧ ϕ̃2(x3) = x1∧ x2 ∧ x3, which denotes the cumulative effects of x1 and x3.

3.2 The Core Algorithms: Scope and Scan

This section specifies Scope and Scan, which incorporate the overall effect ϕ̃s(rj), defined
below. Recall that rj is removed, if rj is necessary for satisfying some formula, i.e., rj⇒ ¬rj.
Note that φrjs = (rjk1� ri1k1� ri2k1)∧ · · · ∧ (rjkr� ru1kr� ru2kr) for Lemma 18 and 19 below.

I Lemma 18. rj � ψ̃s(rj) such that ψ̃s(rj) = rj ∧ ri1∧ ri2 ∧ · · · ∧ ru1∧ ru2, unless 2 ψ̃s(rj).

Proof. Follows from Definition 9. That is, rj⇒ (rj∧ ri1∧ ri2)∧ · · · ∧ (rj∧ ru1∧ ru2). Hence,
rj⇒ rj ∧ ri1∧ ri2 ∧ · · · ∧ ru1∧ ru2. J

I Lemma 19. If ¬rj, then φ̃s(¬rj) holds such that φ̃s(¬rj) = (ri1� ri2) ∧ · · · ∧ (ru1� ru2).

Proof. Follows from Definition 10. φ̃s(¬rj) =
{
{}
}
, or |Ck| > 1 for any Ck in φ̃s(¬rj). J

I Lemma 20 (Overall effect of rj over φs). ϕ̃s(rj) = ψ̃s(rj) ∧ φ̃s(¬rj).

Proof. Follows from rj � rj ∧ ¬rj, as well as from Lemma 18, and Lemma 19 via φrjs . J

L. Salum 5

The algorithm OvrlEft (rj , φ∗) below constructs the overall effect ϕ̃∗(rj) by means of
the local effect ψ̃∗(rj) (see Lines 1-6, or L:1-6), as well as of the local effect φ̃∗(¬rj) (L:7-10).

Algorithm 1 OvrlEft (rj , φ∗) . Construction of the overall effect ϕ̃∗(rj) due to Lemma 20

1: for all k ∈ C
rj
∗ over φ∗ do . Construction of the local effect ψ̃∗(rj) due to rj (Lemma 18)

2: for all ri ∈
(
Ck − {rj}

)
do. ψ̃∗(rj) gets rj via re (see Scope L:4), or via rj (Remove L:2)

3: ck← ck∪ {ri}; . (rjk� ri1k� ri2k)↘(ri1k∧ ri2k). That is, Ck↘ ck (see Definition 2/9)
4: end for
5: ψ̃∗(rj)← ψ̃∗(rj) ∪ ck; . ck consists in ψs(rj) (see Scope L:4), or in ψs (see Remove L:2)
6: end for. L:1-6 are independent from L:7-10, since C

rj
∗ ∩ C

rj
∗ = ∅, i.e., Cxj

∗ ∩ C
xj
∗ = ∅ (Lemma 14)

7: for all k ∈ C
rj
∗ over φ∗ do . Construction of the local effect φ̃∗(¬rj) due to ¬rj (Lemma 19)

8: Ck ← Ck−{rj}; . (rjk� ru1k� ru2k)� (ru1k� ru2k) or (rjk� ruk)� (ruk) (Definition 10)
9: if |Ck| = 1 then ψ̃∗(rj)← ψ̃∗(rj)∪Ck; Ck← ∅; . φ̃∗(¬rj) contains no singleton, Ck� ck

10: end for. 3\2-literal Ck in φrj
∗ shrinks due to ¬rj to 2-literal Ck in φrj

∗ \to conjunct ru in ψ̃∗(rj)
11: return ψ̃∗(rj) & φ̃∗(¬rj)← φ

rj
∗ ; . ψ̃∗(rj) =

∧
(ck∧Ck), |Ck| = 1 & φ̃∗(¬rj) =

∧
Ck, |Ck| > 1

I Lemma 21 (Scope of rj). rj � ψs(rj), if rj transforms φs into φs(rj) = ψs(rj) ∧ φ′s(rj)
such that ψs(rj) =

∧
rj is a conjunction of literals that are true, which is called the scope,

and that φ′s(rj) =
∧
Ck is an X3SAT formula, called beyond the scope. Otherwise, 2 φs(rj).

Proof. φs(rj) = rj∧φs by Definition 11. Then, rj initiates a deterministic chain of reductions
(see Note 12). As a result, rj⇒ rj∧ xi∧ xu holds over each Ck = (rj� xi� xu) containing rj,
and ¬rj⇒ (xu�xv) holds over each Ck = (rj�xu�xv) containing rj. These reductions thus
proceed, as long as new conjuncts re emerge in φs(rj) (see Scope L:2-4). If the reductions
are interrupted, then rj is incompatible (L:5). If they terminate, then the scope ψs(rj) and
beyond the scope φ′s(rj) are constructed (L:9), where ψs(rj) =

∧
rj and φ′s(rj) =

∧
Ck. J

Algorithm 2 Scope (rj , φs) . Construction of ψs(rj) and φ′s(rj) due to rj over φs; ϕs = ψs ∧ φs

1: ψs(rj)← {rj}; φ∗ ← φs; . φs(rj) := rj ∧ φs. ψs and φs are disjoint due to Scan L:1-3
2: for all re ∈

(
ψs(rj)−R

)
do . Reductions of Ck initiated by rj over φs start off

3: OvrlEft (re, φ∗); . It returns ψ̃∗(re) for L:4 & φ̃∗(¬re) for L:6
4: ψs(rj)← ψs(rj)∪{re}∪ ψ̃∗(re);. ψ̃∗(re) due to OvrlEft L:5,9 consists in the scope ψs(rj)
5: if ψs(rj) ⊇ {xi, xi} then return NULL; . rj⇒ xi∧ xi, i ∈ Lφ. 2 ψs(rj), thus 2 φs(rj)
6: φ̃∗(¬r)← φ̃∗(¬r)∪ φ̃∗(¬re); . φ̃∗(¬r) =

{
{}
}
or φ̃∗(¬r) =

⋃
Ck, |Ck|> 1 (OvrlEft L:8-11)

7: φ∗ ← φ̃∗(¬r) ∧ φ′∗; R← R ∪ {re}; . φ̃∗(¬r) and φ′∗ consist in beyond the scope φ′s(rj)
. φ′∗ =

∧
Ck for k ∈ C′∗, where C′∗= C∗ − (Cxe

∗ ∪ Cxe
∗), and Cxe

∗ ∩ Cxe
∗ = ∅ due to Lemma 14

8: end for. The reductions terminate if ψs(rj) = R, which denotes conjuncts already reduced Ck

9: return ψs(rj) & φ′s(rj)← φ∗; . φs(rj) = ψs(rj) ∧ φ′s(rj). ψs(rj) =
∧
rj and φ′s(rj) =

∧
Ck

I Note 22. Ls(rj) being an index set of ψs(rj), Ls(rj)∩L′s(rj) = ∅ and Ls(rj)∪L′s(rj) = Lφ,
if Scope (rj , φs) terminates. Thus, ψs(rj) and φ′s(rj) are disjoint, where φ′s(rj) can be empty.

I Example 23. Consider ψ(x1), Scope (x1, φ), for φ = (x1� x3)∧ (x1� x2 � x3)∧ (x2 � x3).
ψ(x1)← {x1} and φ∗← φ (L:1). Then, φx1

∗ is empty, and φx1
∗ = (x1�x3)∧ (x1�x2�x3) due

to OvrlEft (x1, φ∗). Also, Cx1
∗ = {1, 2}, thus c1← {x3} and ψ̃∗(x1)← ψ̃∗(x1) ∪ c1, as well as

c2 ← {x2, x3} and ψ̃∗(x1) ← ψ̃∗(x1) ∪ c2 (see OvrlEft L:1-6). Then, ψ̃∗(x1) = {x3, x2, x3}
& φ̃∗(¬x1)← φx1

∗ (OvrlEft L:11). As a result, ψ(x1)← ψ(x1) ∪ {x1} ∪ ψ̃∗(x1) (Scope L:4),
and ψ(x1) ⊇ {x3, x3} (L:5), that is, x1⇒ x3 ∧ x3, hence x1 is incompatible in the first scan.

6 On the Tractability of Un/Satisfiability

I Definition 24. Lψ = {i ∈ L | ri ∈ ψs} and Lφ = {i ∈ L | ri ∈ Ck in φs} due to ϕs = ψs∧ φs.

Scan (ϕs) decomposes φs into ψs(x1), ψs(x1), . . . , ψs(xn), when ψs and φs are disjoint. If
2 ψs−1(ri), then ri consists in ψs, and xi and xi are removed from φs. For example, 2 ψs−2(x1)
and 2 ψs−1(x3) hold in Figure 4, where ψs = x1∧x3 and φs = (x4�x2�xn)∧ · · · ∧ (x2�xn).

ϕs = x1∧ x3︸ ︷︷ ︸
ψs

∧ (x4� x2� xn)︸ ︷︷ ︸
C1

∧ · · · ∧
ψs(x6) = x6 ∧ x8 ∧ x9 ∧ x4 ∧ x7

(x6� x8) ∧ (x6� x9� x4) ∧ (x7� x8) ∧ · · · ∧ (x2� xn)︸ ︷︷ ︸
Cm︸ ︷︷ ︸

φs

Figure 4 Scan(ϕs) decomposes φs into ψs(x1), ψs(x1), . . . , ψs(xn), ψs(xn), unless ψs(.) + {xi, xi}

If ri ∈ ψs, then ri is necessary, thus ri ∈ Ck is incompatible trivially for each Ck in φs (see
Scan L:1-2). For example, if x1∧ (x1� x2� x3) holds, then x1 becomes incompatible trivially.
Note that 1∈ Lφ and x1∈ ψs, and that x1⇒ x1∧ x1. If ri⇒ xj ∧ xj, then ri is incompatible
nontrivially (L:6). See also Note 6/25. If Scan (ϕs) is interrupted by Remove L:3, then ϕ is
unsatisfiable. If it terminates (L:9), then a satisfiable assignment is determined (Section 3.4).
I Note 25. It is obvious that 2 ϕs(rj) if 2 (ψs∧ rj) or 2 (rj∧φs) due to ϕs(rj) = ψs∧ rj∧φs
by Definition 3/11, in which rj ∧ φs = φs(rj), and that 2 ϕs(rj) iff ¬rj holds by Definition 5.

Algorithm 3 Scan (ϕs) . ϕs = ψs ∧ φs, ψs =
∧
ri and φs =

∧
Ck. Checks if 2 ϕs(ri) for all i ∈ Lφ

1: for all i ∈ Lφ and ri ∈ ψs do . ϕs(ri) = ψs ∧ ri ∧ φs, thus 2 (ψs ∧ ri), that is, ri⇒ xi∧ xi

2: Remove (ri, φs); . ri is necessary, thus ri is incompatible trivially, hence ri⇒ ¬ri

3: end for. If i ∈ Lψ, ri has been already removed, hence ri ∈ ψs and ri /∈ Ck∀k ∈ Cs, i.e., i /∈ Lφ

4: for all i ∈ Lφ do . Lψ∩Lφ = ∅ due to L:1-3. Hence, i ∈ Lψ iff ri = xi is fixed or ri = xi is fixed
5: for all ri ∈ {xi, xi} do . Each and every xi and xi assumed compatible is to be verified
6: if Scope (ri, φs) is NULL then Remove (ri, φs); . 2 φs(ri), incompatible nontrivially
7: end for . If ri⇒ xj∧ xj, hence ¬xj∨ ¬xj⇒ ¬ri, then ¬ri⇒ ri, where i 6= j due to L:1-3
8: end for. ¬ri iff ri, since ¬ri⇒ ri due to nontrivial, and ¬ri⇐ ri due to trivial incompatibility
9: return ϕ̂= ψ̂ ∧ φ̂, and ψ(ri) &φ′(ri) for all i ∈ Lφ̂ ; . ψ̂ ← ψŝ and φ̂← φŝ. See also Note 27

I Note 26. Lψ and Lφ form a partition of L due to Definition 24 and Scan L:1-3.
I Note 27. When Scan terminates, ψ̂ and φ̂ become disjoint, and φ̂ ≡

∧
i∈L
(
ψ(xi)⊕ ψ(xi)

)
,

where L← Lφ̂. Also, ψ̂ =
∧
ri and φ̂ =

∧
Ck such that |Ck| > 1, because each Ck = {ri} in

φs for any s transforms into ri in ψ̂. That is, Ck = (ri� rj) or Ck = (ri� rj� ru) in φ̂.
Remove (rj , φs) leads to reductions of any Ck 3 rj due to rj, which consists in ψs+1 (see

L:1-2), as well as of any Ck 3 rj due to ¬rj, which consists in φs+1 (see L:1,5).

Algorithm 4 Remove (rj , φs) . rj is incompatible/removed iff rj is necessary, i.e., ¬rj iff rj

1: OvrlEft (rj , φs); . OvrlEft is defined over φs =
∧
Ck, |Ck| > 1, and returns ψ̃s(rj) & φ̃s(¬rj)

2: ψs+1← ψs ∪ {rj} ∪ ψ̃s(rj); . ψs+1 =
∧
ri is true by definition, unless ψs+1 involves xi∧ xi

3: if ψs+1 ⊇ {xi, xi} for some i then return ϕ is unsatisfiable; . ϕs = ψs ∧ φs

4: Lφ← Lφ− {j}; Lψ← Lψ ∪ {j};
5: φs+1← φ̃s(¬rj)∧φ′s; Update {Ck} over φs+1; . φ′s denotes clauses beyond the entire ψs effect

. φ′s =
∧
Ck for k ∈ C′s, where C′s = Cs − (Cxj

s ∪ C
xj
s), and C

xj
s ∩ C

xj
s = ∅ due to Lemma 14

6: Scan (ϕs+1); . ri verified compatible for š 6 s can be incompatible for s̃ > s due to ¬rj in φs

L. Salum 7

3.3 Satisfiability of the Formula ϕ vs Satisfiability of the Scope ψ(ri)
This section shows that ϕ is satisfiable iff ψ(ri) is satisfied for all i ∈ L, and any ri ∈ {xi, xi}.
Recall that rj is removed from φ if ψ(rj) is unsatisfied, which is trivial to check (Scope L:5).

I Proposition 28 (Nontrivial incompatibility). 2 φs(rj) iff 2 ψs(rj) or 2 φ′s(rj) for any s.

Proof. Proof is obvious due to φs(rj) = ψs(rj) ∧ φ′s(rj) by Lemma 21. J

I Note 29 (Assumption). 2 φs(rj) is verified solely via 2 ψs(rj) for some s, which is sufficient
for incompatibility, that is, whether or not 2 φ′s(rj) is ignored for any s.

The following introduces the tools to justify this assumption that facilitates the ϕ scan.

I Definition 30. Ls(ri) = L(ψs(ri)) denotes the index set of ψs(ri), and L′s(ri) = L(φ′s(ri)).

I Definition 31. ψs(ri|rj) is called the conditional scope, and φ′s(ri|rj) is conditional beyond
the scope, which are defined over φ′s(rj) for j 6= i, that is, constructed by Scope

(
ri, φ

′
s(rj)

)
.

I Lemma 32 (No conjunct exists in beyond the scope). Ls(rj) ∩ L′s(rj) = ∅ for any j ∈ Lφ.

Proof. φ′s(rj) =
∧
Ck due to Lemma 21. Let ri the conjunct be in Ck, i ∈

(
Ls(rj) ∩ L′s(rj)

)
.

Then, for any Ck 3 ri, (ri� xj� xu)↘(ri∧ xj∧ xu), thus ri /∈ Ck. Moreover, for any Ck 3 ri,
(ri� rv� ry)� (rv� ry), thus ri /∈ Ck. See Definition 9/10. Hence, i /∈

(
Ls(rj)∩L′s(rj)

)
. J

I Lemma 33. Lφ is partitioned into Ls(rj), Ls(rj1|rj), . . . ,Ls(rjn |rjm) by means of Scope.

I Lemma 34. φs(rj) is decomposed into disjoint ψs(rj), ψs(rj1|rj), . . . , ψs(rjn |rjm).

Proof. Scope(rj , φs) partitions Lφ into Ls(rj) and L′s(rj) for any j ∈ Lφ (see also Lemma 32).
Thus, φs(rj) is decomposed into disjoint ψs(rj) and φ′s(rj). Scope

(
rj1, φ

′
s(rj)

)
partitions

L′s(rj) into Ls(rj1|rj) and L′s(rj1|rj) for any j1 ∈ L′s(rj). Thus, φ′s(rj) is decomposed into
disjoint ψs(rj1|rj) and φ′s(rj1|rj). Finally, φ′s(rjm |rjl) is decomposed into disjoint ψs(rjn |rjm)
and φ′s(rjn |rjm) for any jn ∈ L′s(rjm |rjl) such that L′s(rjn |rjm) = ∅ (see also Note 22). J

The following properties hold if Scan terminates (L:9). Then, ψ∧φ transforms into ψ̂∧ φ̂.
Let φ← φ̂, thus L← Lφ̂. Then, ψ(ri) is true, ψ(ri) = T, for every i ∈ L and ri ∈ {xi, xi}.

I Lemma 35. φ′(rj) is decomposed into disjoint ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm).

Proof. Follows from Lemma 34, and from φ(rj) = ψ(rj) ∧ φ′(rj) due to Lemma 21. J

I Lemma 36. φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjn |rjm), after it terminates.

Proof. Some Ck in φ collapse to some ck in ψ(rj) due to Scope (rj , φ) (see Lemma 21). As a
result, the number of Ck in φ is greater than or equal to that of Ck in φ′(rj), hence |C| > |C′|,
where C denotes an index set of Ck in φ. Also, some Ck in φ shrink to some Ck′ in φ′(rj),
hence ∀k′∈ C′∃k ∈ C [Ck⊇ Ck′]. Thus, φ ⊇ φ′(rj). Likewise, φ′(rj) ⊇ φ′(rj1|rj), since φ′(rj)
is decomposed into ψ(rj1|rj) and φ′(rj1|rj) via Scope

(
rj1, φ

′(rj)
)
. Therefore, φ ⊇ φ′(rj) ⊇

φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjn |rjm), where φ′(rjn |rjm) = φ′(rjn |rj , rj1 , . . . , rjm). J

I Lemma 37. ψ(ri) � ψ(ri|rj), as well as ψ(ri) ` ψ(ri|rj), after the scan terminates.

Proof. φ ⊇ φ′(rj) due to Lemma 36. Scope (ri, φ) constructs ψ(ri), while Scope
(
ri, φ

′(rj)
)

constructs ψ(ri|rj). Therefore, ψ(ri) ⊇ ψ(ri|rj). Because ψ(ri) = T, ψ(ri|rj) = T, hence
ψ(ri) � ψ(ri|rj) (see Figure 2), that is, ψ(ri) entails ψ(ri|rj), where ψ(ri) = ri∧ rj ∧ · · · ∧ rv
and ψ(ri|rj) = ri ∧ · · · ∧ rv. Note that rj /∈ ψ(ri|rj), because rj /∈ Ck for any Ck ∈ φ′(rj), as
j /∈ L′(rj) and j ∈ L(rj) due to Lemma 32. Moreover, ri ` ψ(ri) follows from ri � ψ(ri) (see
Lemma 21), hence ψ(ri) ` ψ(ri|rj) from ψ(ri) � ψ(ri|rj), that is, ψ(ri) proves ψ(ri|rj). J

8 On the Tractability of Un/Satisfiability

I Lemma 38. ψ(ri|rj), ψ(ri|rj , rj1), . . . , ψ(ri|rj , rj1, . . . , rjm) holds for every j ∈ L, and for
every i ∈ L′(rj), i ∈ L′(rj1|rj), . . . , i ∈ L′(rjm |rj , rj1, . . . , rjl), after the scan terminates.

Proof. Recall that Scan (ϕŝ) terminates. As a result, ϕ̂ = ψ̂ ∧ φ̂. Let φ := φ̂, that is, L := Lφ̂

(see also Note 27). Then, the scope ψ(ri) holds for every i ∈ L and ri ∈ {xi, xi}. Moreover,
φ ⊇ φ′(rj) ⊇ φ′(rj1|rj) ⊇ φ′(rj2 |rj1) ⊇ · · · ⊇ φ′(rjn |rjm) due to Lemma 36 for any j ∈ L, and
j1 ∈ L′(rj), . . . , jn ∈ L′(rjm |rjl). Thus, ψ(ri) ⊇ ψ(ri|rj), . . . , ψ(ri) ⊇ ψ(ri|rj , . . . , rjm). Note
that ψ(ri) ⊇ ψ(ri|rj , rj1) due to Scope

(
ri, φ

′(rj1 |rj)
)
, hence ψ(ri) � ψ(ri|rj , rj1). Therefore,

any ψ(ri|rj), ψ(ri|rj , rj1), . . . , ψ(ri|rj , rj1, . . . , rjm) holds, which generalizes Lemma 37. J

I Theorem 39 (Unsatisfiability). rj is incompatible due to 2 φ(rj) iff 2 ψs(rj) for some s.

I Corollary 40 (Satisfiability). �αφ iff the scope ψ(ri) holds for every i ∈ L and ri ∈ {xi, xi}.

Proof. ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm) defined over φ′(rj) are disjoint due to Lemma 35
such that ψ(rj1|rj), ψ(rj2 |rj1), . . . , ψ(rjn |rjm) hold by Lemma 38 for any j ∈ L, j1 ∈ L′(rj),
j2 ∈ L′(rj1 |rj), . . . , jn ∈ L′(rjm |rjl). As a result, φ′(rj) is composed of ψ(.) both disjoint and
satisfied, thus φ′(rj) is satisfied, hence unsatisfiability of φ′s(rj) is ignored to verify 2 φs(rj).
Therefore, Theorem 39 holds (see Proposition 28 and Note 29). Then, ψ(ri) ≡ φ(ri) due to
φ′(ri) satisfied in φ(ri) = ψ(ri)∧φ′(ri). Thus, Corollary 40 holds (see also Appendix A). J

I Theorem 41. If 2 ϕs̃(rj) for some s̃, then 2 ϕs(rj) for all s > s̃, even if ¬ri holds, i 6= j.

Proof. See Note 25/26. 2 ϕs(rj) iff 2 (ψs∧ rj) or 2 φs(rj). Let 2 (ψs̃∧ rj) for some s̃. Then,
2 (ψs∧ rj) for all s > s̃, as ψs̃ ⊆ ψs (Remove L:2). Let 2 φs̃(rj) by xi∧xi. Then, xi∨xi⇒ rj,

thus rj ∈ ψs for s > s̃. Hence, 2 (ψs ∧ rj) for all s > s̃. Let ¬ri by 2 ϕš(ri) for š 6 s̃. Then,
ψš ⊆ ψs̃ ⊆ ψs, and ¬ri⇒ ri and ri⇒ rj, thus {ri, rj} ⊆ ψs for s > s̃. Hence, 2 (ψs ∧ ri∧ rj)
for all s > s̃. Let ¬ri by 2 ϕs(ri) for s > s̃. Hence, 2 (ψs ∧ rj ∧ ri) for all s > s̃. J

I Proposition 42. The time complexity of Scan is O(mn3).

Proof. OvrlEft, and Remove, takes 4m steps by
(
|Crj∗ |×|Ck|

)
+ |Crj∗ | = 3m+m. Scope takes

n4m steps by |ψs(rj)| × 4m. Then, Scan takes n24m steps due to L:1-3 by |Lφ | × |ψs| × 4m,
as well as 8n2m+ 8nm steps due to L:4-8 by 2|Lφ | × (4nm+ 4m). Also, the number of the
scans is ŝ 6 |Lφ | due to Remove L:6. Therefore, the time complexity of Scan is O(n3m). J

I Example 43. Let ϕ =
{
{x3, x4, x5}, {x3, x6, x7}, {x4, x6, x7}

}
. Let Scope (x3, φ) execute

first in the first scan, which leads to the reductions below over φ due to x3. Note that ψ = ∅.
φ(x3) = (x3 � x4 � x5)∧ (x3 � x6 � x7)∧ (x4 � x6 � x7) ∧ x3

x3 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x4 � x6 � x7) ∧ x3

x4 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x6 � x7) ∧ x3

x6 ⇒ (x3 ∧ x4 ∧ x5)∧ (x3 ∧ x6 ∧ x7)∧ (x7) ∧ x3

Because 2
(
ψ(x3) = x3 ∧x4 ∧x5 ∧x6 ∧x7 ∧x7

)
, x3 is incompatible, hence x3 is necessary,

i.e., ¬x3 ⇒ x3. Thus, ϕ→ϕ2 by (x3 � x4 � x5)� (x4 � x5) and (x3 � x6 � x7)� (x6 � x7).
As a result, ϕ2 = (x4� x5)∧ (x6� x7)∧ (x4� x6� x7)∧ x3. Let Scope (x5, φ2) execute next.

φ2(x5) = (x4 � x5) ∧ (x6 � x7) ∧ (x4 � x6 � x7) ∧ x5

x5 ⇒ (x4)∧ (x6 � x7) ∧ (x4 � x6 � x7) ∧ x5

x4 ⇒ (x4)∧ (x6 � x7) ∧ (x4 ∧ x6 ∧ x7) ∧ x5

x6 ⇒ (x4)∧ (x7) ∧ (x4 ∧ x6 ∧ x7) ∧ x5

Because 2
(
ψ2(x5) = x4 ∧ x7 ∧ x6 ∧ x7 ∧ x3 ∧ x5

)
, x5 is removed from φ2, i.e., ¬x5 ⇒ x5.

Thus, ϕ2→ϕ3 by (x4�x5)↘(x4∧x5), where ϕ3 = (x4∧x5)∧ (x6�x7)∧ (x4�x6�x7)∧x3,

and x4 leads to the next reduction by (x4�x6�x7)� (x6�x7). Then, Scan (ϕ4) terminates,
and ϕ4 = x3∧x4∧x5∧(x6�x7), that is, ϕ̂ = ψ̂∧ φ̂, and ψ̂ = {x3, x4, x5} and φ̂ =

{
{x6, x7}

}
.

L. Salum 9

In Example 43, if Scope (x5, φ) executes first, then ψ(x5) = x5 becomes the scope, and
φ′(x5) = (x3 � x4) ∧ (x3 � x6 � x7) ∧ (x4 � x6 � x7) becomes beyond the scope of x5 over φ.
Then, x5 is compatible (in φ) due to Theorem 39, since ψ(x5) holds, while it is incompatible
due to Proposition 28, since 2 φ′(x5) holds. On the other hand, the fact that 2 φ′(x5) holds
is verified indirectly. That is, incompatibility of x5 is checked by means of ψs(x5) for some s.
Then, x5 becomes incompatible (in φ2), because 2 ψ2(x5) holds, after ϕ→ϕ2 by removing
x3 from φ due to 2 ψ(x3). As a result, 2 φ′(x5) holds due to ¬x3. Thus, there exists no
rj such that 2 φ′(rj), when the scan terminates, because ψ(ri) holds for all ri in φ, hence
ψ(ri|rj) holds for all ri in φ′(rj), after each rj is removed if 2 ψs(rj) (see also Figures 1-4).

3.4 Construction of a satisfiable assignment by composing scopes
ϕ̂= ψ̂∧ φ̂, when Scan (ϕŝ) terminates. Let ψ := ψ̂ and φ := φ̂, i.e., L := Lφ̂. Then, �αφ holds
by Corollary 40, where α is a satisfiable assignment, and constructed by Algorithm 5 through
any (i0, i1, i2, . . . , im, in) over L such that α = {ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1), . . . , ψ(rin |rim)}.
Thus, ϕ is decomposed into disjoint scopes ψ,ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1), . . . , ψ(rin |rim) (see
Note 26, and Lemmas 33-34). Recall that any scope ψ(.) denotes a minterm by Definition
2/3, and that Scope (ri, φ) constructs ψ(ri) and φ′(ri) to determine a satisfiable assignment,
unless ϕ collapses to a unique assignment, that is, unless ϕ̂ = α = ψ̂. See also Appendix A
to determine a satisfiable assignment without constructing ψ(ri|.) by Scope

(
ri, φ

′(.)
)
.

Algorithm 5 . Construction of a satisfiable assignment α over φ, L := Lφ̂ and φ := φ̂

Pick j ∈ L; . The scope ψ(ri) and beyond the scope φ′(ri) for all i ∈ L are available initially
α← ψ(rj); L← L− L(rj); φ← φ′(rj);
repeat

Pick i ∈ L; Scope (ri, φ); . It constructs ψ(ri|rj) and φ′(ri|rj) with respect to φ′(rj)
α← α∪ψ(ri); . ψ(ri) := ψ(ri|rj), because ψ(ri) is unconditional with respect to φ updated
L← L− L(ri); . L← L′(ri|rj) due to the partition

{
L(rj),L(ri|rj),L′(ri|rj)

}
over L

φ← φ′(ri); . φ′(ri) := φ′(ri|rj), because φ′(ri) is unconditional with respect to φ updated
until L = ∅
return α; . ψ(rin |rim) = ψ(rin |rj , ri1, . . . , rim) (see also Appendix A)

I Definition 44. Let
〈
〈ri1,1, ri2,1, ri3,1〉, 〈rj1,2, rj2,2, rj3,2〉, . . . , 〈ru1,m, ru2,m, ru3,m〉

〉
be in as-

cending order with respect to the index set L. If ı3 < 1 for any 〈rı1,k, rı2,k, rı3,k〉 and any
〈r1,k+1, r2,k+1, r3,k+1〉, then ıφ ∪ φ = φ and ıφ ∩ φ = ∅ such that Ck ∈ ıφ and Ck+1 ∈ φ.

I Note. ıφ and φ form a partition of φ, hence their satisfiability check can be independent.

I Example 45. Let 1φ = (x1� x2 � x6) ∧ (x3 � x4 � x5) ∧ (x3 � x6 � x7) ∧ (x4 � x6 � x7),
2φ = (x8 � x9 � x10), and 3φ = (x11� x12 � x13) to form ϕ = 1φ∧ 2φ∧ 3φ (see Definition 44).
Then, Scan (ϕ4) returns ϕ is satisfiable. Therefore, ϕ̂ = ψ̂ ∧ φ̂, where ψ := ψ̂ = x3 ∧ x4 ∧ x5
and φ := φ̂ = (x1�x2�x6)∧ (x6�x7)∧ 2φ∧ 3φ (see Example 43). Then, α is constructed by
composing ψ(.) based on φ′(.) below, where Lψ = {3, 4, 5} and L := Lφ̂ = {1, 2, . . . , 13} − Lψ.

ψ(x1) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x1) = 2φ ∧ 3φ

ψ(x2) = x2 & φ′(x2) = (x1� x6) ∧ (x6 � x7) ∧ 2φ ∧ 3φ

ψ(x2) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x2) = 2φ ∧ 3φ

ψ(x6) = ψ(x7) = x1∧ x2 ∧ x6 ∧ x7 & φ′(x6) = φ′(x7) = 2φ ∧ 3φ

ψ(x6) = ψ(x7) = x6 ∧ x7 & φ′(x6) = φ′(x7) = (x1� x2) ∧ 2φ ∧ 3φ

ψ(x8) = x8 ∧ x9 ∧ x10 & φ′(x8) = (x1� x2 � x6) ∧ (x6 � x7) ∧ 3φ

ψ(x11) = x11∧ x12 ∧ x13 & φ′(x11) = (x1� x2 � x6) ∧ (x6 � x7) ∧ 2φ

10 On the Tractability of Un/Satisfiability

I Example 46. A satisfiable assignment α is constructed by an order of indices over L, L =
{1, . . . , 13} − Lψ (Example 45), such that ri := xi for any ψ(ri) throughout the construction.
First, pick 6 ∈ L. As a result, α← ψ(x6) and L← L−L(x6), where ψ(x6) = {x1, x2, x6, x7},
L(x6) = {1, 2, 6, 7}, and L ← {8, 9, 10, 11, 12, 13}. Then, pick 8, hence α ← α ∪ ψ(x8|x6),
where ψ(x8|x6) = {x8, x9, x10}. Also, L← L− L(x8|x6), where L(x8|x6) = {8, 9, 10}, hence
L← {11, 12, 13}. Finally, pick 11. Therefore, α← α ∪ ψ(x11|x6, x8) such that L← ∅, which
indicates its termination. Note that Scope

(
x11, φ

′(x8|x6)
)
constructs ψ(x11|x6, x8), in which

φ′(x8|x6) = 3φ, and that φ′(x11|x6, x8) = ∅ iff L← ∅. Note also that ψ(x8|x6) = ψ(x8) and
ψ(x11|x6, x8) = ψ(x11), since 1φ, 2φ and 3φ are disjoint (see Definition 44). Consequently,
Algorithm 5 constructs α = {ψ(x6), ψ(x8|x6), ψ(x11|x6, x8)}. Note that ϕ is decomposed into
ψ, ψ(x6), ψ(x8|x6), and ψ(x11|x6, x8), which are disjoint (see also Note 27 and Lemma 34).

I Example 47. Let (2, 1, 8, 11) be another order of indices in Example 45. This order leads
to the assignment {ψ,ψ(x2), ψ(x1|x2), ψ(x8|x2, x1), ψ(x11|x2, x1, x8)} for ϕ. This assignment
corresponds to the partition

{
Lψ, {2}, {1, 6, 7}, {8, 9, 10}, {11, 12, 13}

}
, where Lψ = {3, 4, 5}

(see also Note 26 and Lemma 33). Note that the scope ψ(x1) is constructed over φ, and the
conditional scope ψ(x1|x2) is constructed over φ′(x2), where φ ⊇ φ′(x2). Recall that φ := φ̂.
Hence, ψ(x1) � ψ(x1|x2), in which ψ(x1) = x1∧ x2 ∧ x6 ∧ x7, while ψ(x1|x2) = x1∧ x6 ∧ x7.
Moreover, ψ(x8) � ψ(x8|x2, x1) due to φ ⊇ φ′(x1|x2), and ψ(x11) � ψ(x11|x2, x1, x8) due to
φ ⊇ φ′(x8|x2, x1), where φ′(x1|x2) = 2φ ∧ 3φ and φ′(x8|x2, x1) = 3φ (see Lemmas 36-38).

3.5 An Illustrative Example
This section illustrates Scan (ϕs). Let ϕ = φ = (x1� x3) ∧ (x1� x2 � x3) ∧ (x2 � x3), which
is adapted from Esparza [1], and denotes a general formula by Definition 13. Note that C1 =
{x1, x3}, C2 = {x1, x2, x3}, and C3 = {x2, x3}. Hence, C = {1, 2, 3}, and L = Lφ = {1, 2, 3}.

Scan (ϕ): There exists no conjunct in (the initial formula) ϕ. That is, ψ is empty (L:1).
Recall that ϕ := ϕ1, and that ri ∈ {xi, xi}. Recall also that nontrivial incompatibility of ri
is checked (L:4-8) via Scope (ri, φ). Moreover, the order of incompatibility check is arbitrary
(incompatibility is monotonic) by Theorem 41. Let Scope (x1, φ) execute due to Scan L:6.

Scope (x1, φ): Since ψ(x1) ⊇ {x3, x3}, x1 is incompatible nontrivially (see Example 23).
Thus, x1 becomes necessary (a conjunct). Then, Remove (x1, φ) executes due to Scan L:6.

Remove (x1, φ): Cx1 = ∅ by OvrlEft L:1. Cx1 = {1, 2}, thus φx1 = (x1�x3)∧ (x1�x2�x3)
by OvrlEft L:7. As a result, ψ̃(x1) = {x3} & φ̃(¬x1) =

{
{}, {x2, x3}

}
, the effects of x1 and

¬x1. Note that C1← ∅. Then, ψ2← ψ ∪ {x1} ∪ ψ̃(x1) (Remove L:2), and Lφ← Lφ−{1} and
Lψ← Lψ ∪ {1} (L:4). Also, φ2← φ̃(¬x1) ∧ φ′, where φ̃(¬x1) = (x2� x3) and φ′= (x2� x3)
(L:5). As a result, ψ2 = x1∧ x3, and φ2 = (x2� x3)∧ (x2� x3). Note that C1 = {x2, x3} and
C2 = {x2, x3}. Consequently, ϕ2 = ψ2 ∧ φ2, and Scan (ϕ2) executes due to Remove L:6.

Scan (ϕ2): C2 = {1, 2} and Lφ = {2, 3} hold in φ2. Then, {x2, x2} ∩ ψ2 = ∅ for 2 ∈ Lφ,
while x3 ∈ ψ2 for 3 ∈ Lφ (L:1). As a result, x3 is necessary for satisfying ϕ2, hence x3⇒ ¬x3,
that is, x3 is incompatible trivially. Then, Remove (x3, φ2) executes due to Scan L:2.

Remove (x3, φ2): Cx3
2 = {2}, thus φx3

2 = (x2� x3), and Cx3
2 = {1}, thus φx3

2 = (x2� x3).
As a result, ψ̃2(x3) = {x2} ∪ {x2} & φ̃2(¬x3) =

{
{}
}
, because C1 = {x2} consists in ψ̃2(x3),

rather than in φ̃2(¬x3) (see OvrlEft L:9). Hence, ψ3← ψ2 ∪ {x3} ∪ ψ̃2(x3), Lφ← Lφ− {3},
and Lψ← Lψ∪ {3}, i.e., Lφ = {2}. Therefore, φ3 =

{
{}
}
, thus C3 = ∅, and ψ3 = x1∧ x3 ∧ x2.

Scan (ϕ3): x2 ∈ ψ3 for 2 ∈ Lφ over φ3. Then, Remove (x2, φ3) executes due to Scan L:2.
Remove (x2, φ3): ψ̃3(x2) = ∅ & φ̃3(¬x2) =

{
{}
}
due to OvrlEft (x2, φ3), because Cx2

3 = ∅
and Cx2

3 = ∅, since C3 = ∅. Hence, Lφ← {2} − {2} and φ4 ← φ3. Then, Scan (ϕ4) executes.
Scan (ϕ4) terminates: ϕ̂= ψ̂ = x1∧ x3∧ x2 (L:9), and ϕ collapses to a unique assignment.

L. Salum 11

Let Scope (x3, φ) execute before Scope (x1, φ) due to Scan L:6 (see Theorem 41).
Scope (x3, φ): ψ(x3)← {x3} and φ∗ ← φ (L:1). Then, Cx3

∗ = {2} due to OvrlEft (x3, φ∗)
L:1, hence φx3

∗ = (x1� x2 � x3). As a result, c2 ← {x1, x2} and ψ̃∗(x3)← ψ̃∗(x3)∪ c2 (L:3,5).
Moreover, Cx3

∗ = {1, 3} (L:7), hence φx3
∗ = (x1� x3)∧ (x2� x3). Then, C1← {x1, x3} − {x3},

ψ̃∗(x3)← ψ̃∗(x3) ∪ C1, and C1← ∅. Likewise, C3← {x2, x3} − {x3}, ψ̃∗(x3)← ψ̃∗(x3) ∪ C3,
and C3← ∅ (OvrlEft L:8-9). Consequently, ψ̃∗(x3)← {x1, x2, x1} & φ̃∗(¬x3)← φx3

∗ (L:11).
Note that φx3

∗ =
{
{}, {}

}
, since C1 = C3 = ∅. Then, ψ(x3)← ψ(x3) ∪ {x3} ∪ ψ̃∗(x3) due to

Scope L:4, hence ψ(x3) = {x3, x1, x2, x1}. Since ψ(x3) ⊇ {x1, x1} (L:5), x3 is incompatible
nontrivially, i.e., x3⇒ x1∧ x1 and ¬x3⇒ x3. Then, Remove (x3, φ) executes due to Scan L:6.

Remove (x3, φ): φx3 = (x1� x3) ∧ (x2� x3) due to Cx3 = {1, 3}, and φx3 = (x1� x2 � x3)
due to Cx3 = {2}. Then, OvrlEft (x3, φ) returns ψ̃(x3) = {x1, x2} & φ̃(¬x3) =

{
{x1, x2}

}
(Remove L:1), ψ2← ψ ∪ {x3} ∪ ψ̃(x3) (L:2), and Lφ← Lφ−{3} and Lψ← Lψ∪ {3} (L:4). As
a result, ψ2 = x3 ∧ x1∧ x2. Moreover, φ2← φ̃(¬x3) ∧ φ′ (L:5), in which φ̃(¬x3) = (x1� x2)
and φ′ is empty. Therefore, ϕ2 = ψ2 ∧ φ2. Note that C1 = {x1, x2}, hence C2 = {1}. Recall
that Lφ = {1, 2}, and that Lψ = {3}. Then, Scan (ϕ2) executes due to Remove (x3, φ) L:6.

Scan (ϕ2): Lφ = {1, 2} such that x2 ∈ ψ2 and x1 ∈ ψ2. Thus, x2 and x1 are necessary,
hence x2 and x1 are incompatible trivially. Then, Remove(x1, φ2) and Remove(x2, φ2) execute.

The fact that the order of incompatibility check is arbitrary (Theorem 41) is illustrated as
follows. Scope (x3, φ) returns x3 is incompatible nontrivially, since x3⇒ x1∧ x1. Therefore,
¬x1∨ ¬x1⇒ ¬x3, hence x1∨ x1⇒ x3. Then, x3⇒ x1 due to C1 = (x1� x3), and x1⇒ ¬x1.
Thus, x1 is still incompatible, but trivially

(
cf. Scope (x1, φ)

)
, even if ¬x3 holds. That is, x1

the nontrivial incompatible in φ due to x1⇒ x3∧ x3, i.e., ¬x3∨ ¬x3⇒ ¬x1, is incompatible
trivially in ψ2 due to x1⇒ ¬x1. See Scan (ϕ2) above. Also, since x3 /∈ Ck and x3 /∈ Ck in φs
for any s > 2, 2 ϕs(x3) for all s > 2, even if any ri is removed from some Ck in φs, s > 2.

4 Conclusion

X3SAT has proved to be effective to show P = NP. A polynomial time algorithm checks
unsatisfiability of φ(ri) such that 2 φ(ri) iff ψs(ri) involves xj ∧ xj for some s. Thus, φ(ri)
reduces to ψ(ri). ψ(ri) denotes a conjunction of literals that are true, since each rj such that
2 ψs(rj) is removed from φ. Hence, φ is satisfiable iff ψ(ri) is satisfied for any ri ∈ {xi, xi}.
Thus, it is easy to verify satisfiability of φ via satisfiability of ψ(x1), ψ(x1), . . . , ψ(xn), ψ(xn).

References
1 Javier Esparza. Decidability and complexity of Petri net problems – an introduction. In

Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
volume 1491 of LNCS, pages 374–428. Springer Berlin Heidelberg, 1998.

2 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM. URL: http://doi.acm.org/10.1145/800133.804350.

A Proof of Theorem 39/40

This section gives a rigorous proof of Theorem 39/40. Recall that the ϕs scan is interrupted
iff ψs involves xi∧ xi for some i and s, that is, ϕ is unsatisfiable, which is trivial to verify.
Recall also that the ϕŝ scan terminates iff ψŝ(ri) = T for any i ∈ Lφ̂, ri ∈ {xi, xi}. Moreover,
ϕ̂= ψ̂∧ φ̂ such that ψ̂ = T (see Scan L:9 and Note 27). Therefore, when the scan terminates,
satisfiability of φ̂ is to be proved, which is addressed in this section. Let φ := φ̂, i.e., L := Lφ̂.

http://doi.acm.org/10.1145/800133.804350

12 On the Tractability of Un/Satisfiability

I Theorem 48 (cf. 39-40/Claim 1). These statements are equivalent: a) 2 φ(rj) iff 2 ψs(rj)
for some s. b)ψ(ri) = T for any i ∈ L. c)�αφ by α = {ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim)}.

Proof. We will show a⇒ b, b⇒ c, and c⇒ a (see Kenneth H. Rosen, Discrete Mathematics
and its Applications, 7E, pg. 88). Firstly, a⇒ b holds, because a holds by assumption (see
Note 29 and Scope L:5), and b holds by definition (see Scan L:9). Moreover, ψ(ri) � ψ(ri|rj)
due to Lemma 37/38 for every ri ∈ {xi, xi} and i ∈ L. Next, we will show b⇒ c. We do this
by showing that satisfiability of φ is preserved throughout the assignment α construction,
α = {ψ(ri0), ψ(ri1|ri0), . . . , ψ(rin |rim)}, because a partial assignment ψ(ri|rj) is constructed
arbitrarily through consecutive steps having the Markov property. Thus, construction of
ψ(ri|rj) in the next step is independent from the preceding steps, and depends only upon
ψ(rj |rk) in the present step (see also Lemma 33/34). The construction process is as follows.

Step 0: Pick any ri0 in φ. The reductions due to ri0 partition L into L(ri0) and L′(ri0).
Note that i0 ∈ L and i0 ∈ L(ri0). Hence, i0 /∈ L′(ri0) by Lemma 32. Moreover, ψ(ri0) holds
such that φ(ri0) = ψ(ri0) ∧ φ′(ri0) in Step 0. Then, pick an arbitrary ri1 in φ′(ri0) for Step 1.

Step 1: L(ri0) ∩ L′(ri0) = ∅ in Step 0, and the reductions due to ri1 over φ′(ri0) partition
L′(ri0) into L(ri1 |ri0) and L′(ri1 |ri0). Thus, L(ri0)∩L(ri1|ri0) = ∅, since L′(ri0) ⊇ L(ri1|ri0).
As a result, L is partitioned into L(ri0), L(ri1|ri0), and L′(ri1|ri0) due to ri0 and ri1. Moreover,
ψ(ri1|ri0) holds due to Lemma 37/38. Thus, ψ(ri0) and ψ(ri1|ri0) are disjoint, as well as
true. Therefore, ψ(ri0) ∧ ψ(ri1|ri0) = T, and φ(ri0 , ri1) = ψ(ri0) ∧ ψ(ri1|ri0) ∧ φ′(ri1|ri0).

Step 2: The preceding steps have partitioned L into L(ri0)∪L(ri1|ri0) and L′(ri1|ri0), and
ri2 in φ′(ri1|ri0) partitions L′(ri1|ri0) into L(ri2|ri1) and L′(ri2|ri1), i.e., L′(ri1|ri0) ⊇ L(ri2|ri1).
Then,

(
L(ri0)∪L(ri1|ri0)

)
∩L(ri2 |ri1) = ∅. Thus, ψ(ri0)∧ψ(ri1|ri0) and ψ(ri2 |ri1) are disjoint,

as well as true. Therefore, φ(ri0 , ri1, ri2) = ψ(ri0)∧ψ(ri1|ri0)∧ψ(ri2 |ri1)∧φ′(ri2 |ri1), in which
ψ(ri0)∧ ψ(ri1|ri0)∧ ψ(ri2 |ri1) = T. Note that α ⊇ {ψ(ri0), ψ(ri1|ri0), ψ(ri2 |ri1)}, and that L
is partitioned into L(ri0), L(ri1|ri0), L(ri2|ri1), and L′(ri2|ri1) such that L′(ri2|ri1) 6= ∅.

Step n: rin partitions L′(rim |ril) into L(rin |rim) and L′(rin |rim) such that L′(rin |rim) = ∅.
Then, L(ri0)∪L(ri1|ri0)∪ · · · ∪L(rim |ril) and L′(rim |ril), hence L(rin |rim), form a partition
of L. Therefore, ψ(ri0) ∧ ψ(ri1|ri0) ∧ · · · ∧ ψ(rim |ril) and ψ(rin |rim) are disjoint, as well as
true. Thus, α = φ(ri0 , . . . , rin) = ψ(ri0)∧ψ(ri1|ri0)∧ · · · ∧ψ(rim |ril)∧ψ(rin |rim) is satisfied.

Consequently, φ is composed of ψ(.) disjoint and satisfied, thus �αφ, hence b⇒ c holds.
Finally, we show c⇒ a. ri∧ φ transforms into ψ(ri) ∧ φ′(ri), thus (ri∧ φ) ≡

(
ψ(ri) ∧ φ′(ri)

)
.

Since φ, and ψ(ri) for any ri are satisfied, φ′(ri) for any ri is satisfied. Hence, unsatisfiability
of ψs(ri) for some s is necessary and sufficient for the unsatisfiability of φs(ri) for any s. J

I Note. The assignment α construction is driven by partitioning the set L′(.) such that
L← L− L(ri0) in Step 1, and L← L− L(rin−1 |rin−2) for in ∈ L′(rin−1 |rin−2) in Step n > 2.
I Note. ψ(ri) ≡ φ(ri) by Theorem 48. Thus, the formula φ =

∧
k∈C Ck transforms into the

formula φ′ =
∧
i∈L Ci, where Ck = (ri� rj� rv) and Ci =

(
ψ(xi)⊕ ψ(xi)

)
. See also Note 27.

I Note (Construction of α). In order to form a partition over the set φ, α is constructed such
that ψ(ri1 |ri0) = ψ(ri1)− ψ(ri0), and ψ(rin |rin−1) = ψ(rn)−

(
ψ(ri0) ∪ · · · ∪ ψ(rin−1 |rin−2)

)
for n > 2. On the other hand, if the construction involves no set partition, then α =

⋃
ψ(ri)

for i = (i0, i1, . . . , in), where i0 ∈ L, i1∈ L′(ri0), . . . , in ∈ L′(rim |ril), thus ri0≺ ri1≺ · · · ≺ rin.
Note that there is no need to construct φ′(ri) in Scan/Scope L:9 (cf. Algorithm 5).

For instance, if Example 45 involves no set partition, then α = {ψ(x7), ψ(x2), ψ(x1)}, in
which ψ(x7) = {x7, x6}, ψ(x2) = {x2}, and ψ(x1) = {x1, x2, x7, x6}. Also, x7 ≺ x2 ≺ x1 due
to x2 ∈ φ′(x7) and x1∈ φ′(x2|x7). Moreover, ψ(x7), ψ(x2|x7), and ψ(x1|x2) form a partition
over the set φ, where ψ(x2|x7) = ψ(x2)− ψ(x7) and ψ(x1|x2) = ψ(x1)−

(
ψ(x2|x7) ∪ ψ(x7)

)
.

As a result, α = φ(x7, x2, x1) = {x7, x6} ∪ {x2} ∪ {x1} such that {x7, x6} ∩ {x2} ∩ {x1} = ∅.

	Introduction
	Basic Definitions
	The Formula Scan
	Incompatibility-Reductions
	The core algorithms
	Satisfiability
	Finding an assignment
	Example

	Conclusion
	Proof of Theorem 39/40

