
EasyChair Preprint
№ 15904

Unification as a Simple Theorem Prover

Murat Sinan Aygün

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 11, 2025



Unification As A Simple Theorem Prover

Murat Sinan Aygün1

sinan_aygun@yahoo.com

Abstract. In this paper, unification is considered as a simple theorem
prover in which variables to be solved are directly represented by free
logic variables. This approach is different from other works which con-
sider unification as the application of a set of rewrite rules. The benefit of
the approach this paper considers is naturalness, clearness and uniform
framework. The theorem prover is not in full setting. Since programming
formulas are fixed and simple a few rules, goal formulas are matched with
the left hand-side of rewrite rules. The theorem prover acts like a term
rewriting system. But when free logic variables are at the top, they are
subject to search. This paper considers the solution of this technical
problem.

Keywords: Unification · Theorem prover · Term rewriting · The most
general substitution. · Nondeterminism.

1 Introduction

Unification plays a central role in automated theorem proving [1, 2]. In unifica-
tion, a set of rewrite rules are applied to a unification problem repeatedly until
a trivial solution is reached. Solving unification problem is a term rewriting.
Variables to be solved are defined in a fixed domain and rewrite rules are de-
fined based on this domain accordingly. Unification is used as a tool theorem
prover applies in its inference system to prove theorems. Instead, it is interest-
ing to specify unification as a theorem to be proved not an auxiliary mechanism.
Theorem provers are developed so and they are so important, why should they
be incapable of doing this task using their logic? So, specifying unification as a
theorem proving should be as important as they are.

As a result, unification is given as a query to be proved where variables to
be solved are defined as free logic variables and they are not bound by a domain
as in term rewriting system. They can take whatever value to take as long as it
satisfies the goal.

Definition 1. The recursive relation ⇔ is defined as follows

1. a ⇔ a
2. if f(x) ⇔ f(y) x ⇔ y
3. if g(x1, x2) ⇔ g(x3, x4) x1 ⇔ x3 and x2 ⇔ x4

Definition 1 is given a simple theorem prover. The rules are so simple that goal
does not need to be unified with the left hand-side of a rule during inference.
Goal matching with the left hand-side of a rule suffices.



2 M.S. Aygün

Example 1. The rules of Definition 1 are applied to (1)

g(g(a, a), f(a)) ⇔ g(g(a, a), f(a)) (1)

– g(g(a, a), f(a)) ⇔ g(g(a, a), f(a)) (using rule 3)
– g(a, a) ⇔ g(a, a) and f(a) ⇔ f(a) (using rule 2)
– g(a, a) ⇔ g(a, a) and a ⇔ a (using rule 1)
– g(a, a) ⇔ g(a, a) (using rule 3)
– a ⇔ a and a ⇔ a (using rule 1)
– a ⇔ a (using rule 1)
–

Example 2. Some terms may be variables as in (2)

g(x, f(a)) ⇔ g(f(y), f(a)) (2)

– g(x, f(a)) ⇔ g(f(y), f(a))(using rule 3)
– x ⇔ f(y) and f(a) ⇔ f(a) (using rule 2)
– x ⇔ f(y) and a ⇔ a (using rule 1)
– x ⇔ f(y) (if x is substituted by f(x1) and using rule 2)
– x1 ⇔ y (if x1 is substituted by f(x2) and y by f(y1), then using rule 2)
– x2 ⇔ y1

In Example 2, the free variables take infinite values, each of which is valid and
makes the goal provable. The aim of this work is to rule out these infinite values
and compute the most general substitution using a technique. Terms are defined
in a special format and should be linear.

2 Marking Solvable Variables

Definition 2. Given that the symbols a, ν and f are respectively 0-ary, 1-ary
and n-ary functions, a well defined form is either a or ν(x). f(t1, ..., tn) is a well
defined form if each ti is a well defined form.

Example 3. g(ν(x), f(a)) and g(f(ν(y)), f(a)) are well defined forms. On the
other hand, g(ν(f(a)), f(a)) and g(f(ν(y)), x) are not.

Definition 3. Let ∀x equal(x, x) be a binary predicate and used to perform
variable substitution.

Definition 4. Given that the symbols a, ν and f are respectively 0-ary, 1-ary
and n-ary functions, unification is defined as follows

1. a ⇔ a
2. if f(x1, .., xn) ⇔ f(y1, .., yn) x1 ⇔ y1 and ... xn ⇔ yn
3. if ν(x) ⇔ ν(y) equal(x, y)
4. if ν(x) ⇔ y equal(x, y) if y is a function a or f
5. if y ⇔ ν(x) equal(x, y) if y is a function a or f



Unification As A Simple Theorem Prover 3

Example 4.
g(ν(x), f(a)) ⇔ g(f(ν(y)), f(a)) (3)

– g(ν(x), f(a)) ⇔ g(f(ν(y)), f(a))(using rule 2)
– ν(x) ⇔ f(ν(y)) and f(a) ⇔ f(a) (using rule 2)
– ν(x) ⇔ f(ν(y)) and a ⇔ a (using rule 1)
– ν(x) ⇔ f(ν(y)) (using rule 4)
– equal(x, f(ν(y))) (x is substituted by f(ν(y)))
–

Each variable of the terms to be unified must be different. This restriction guar-
antees that when performing equal(x, y) in unification process, at least one ar-
gument x or y is a variable. Otherwise equal predicate should also perform
unification not just variable substitution. This contradicts the aim of this paper
that considers unification as a theorem to be proved not an auxiliary mechanism
we apply during inference. At meta-level only variable substitution is performed.

Example 5. The following is a prolog program

1. equal(X,X).
2. eq(a,a).
3. eq(b,b).
4. eq(v(X),v(Y)) :- equal(X,Y).
5. eq(v(X),Y) :- mu(Y), equal(X,Y).
6. eq(Y,v(X)) :- mu(Y), equal(X,Y).
7. eq(f(X),f(Y)) :- eq(X,Y).
8. eq(h(X),h(Y)) :- eq(X,Y).
9. eq(g(X1,X2),g(X3,X4)) :- eq(X1,X3),eq(X2,X4).

10. mu(a).
11. mu(b).
12. mu(f(_)).
13. mu(h(_)).
14. mu(g(_,_)).

when the goal (4) is submitted to prolog

eq(g(v(X), h(v(Z))), g(f(v(Y )), v(U))) (4)

it returns the answer (5)

U = h(v(Z)), X = f(v(Y )) (5)

On the other hand, this restriction can be solved when we make marking not
in the original term but using its copy. We need to check free logic variable
occurrences in goal formulas in order to rule out their infinite instantiations by
using the copy of the original term. Suppose z1, .., zn are free logic variables and
c1, .., cn are new arbitrary constants not available in the signature. Assume that
φ is a one to one mapping form {z1, .., zn} to {c1, .., cn}, written as {zi → ci}
(1 ≤ i ≤ n). For a given term s, t is the encoding of s if and only if t = s φ, in other



4 M.S. Aygün

words, t is the resultant term after applying φ to s. We simultaneously apply the
transformation rules to s and its encoding t at each step as s, t → ... → sn, tn
such that tn is the encoding of sn and at each step the mapping is preserved.
We update Definition 1 according to this formulation.

Definition 5. The recursive relation ⇔ is defined as follows

1. a, a ⇔ a, a
2. if f(x), f(x′) ⇔ f(y), f(y′) x, x′ ⇔ y, y′

3. if g(x1, x2), g(x
′
1, x

′
2) ⇔ g(x3, x4), g(x

′
3, x

′
4)

x1, x
′
1 ⇔ x3, x

′
3 and x2, x

′
2 ⇔ x4, x

′
4

Example 6. Encoded and encoding terms are in the same goal as in (6) where
φ = {x → c1, y → c2}

g(x, f(a)), g(c1, f(a)) ⇔ g(f(y), f(a)), g(f(c2), f(a)) (6)

– g(x, f(a)), g(c1, f(a)) ⇔ g(f(y), f(a)), g(f(c2), f(a))(using rule 3)
– x, c1 ⇔ f(y), f(c2) and f(a), f(a) ⇔ f(a), f(a) (using rule 2)
– x, c1 ⇔ f(y), f(c2) and a, a ⇔ a, a (using rule 1)
– x, c1 ⇔ f(y), f(c2)

The goal x, c1 ⇔ f(y), f(c2) fails because c1 fails to match f(x′) in rule 2. There
is no way the current goal to go using any of these three rules or there is no
substitution which makes it provable using these three rules. The new arbitrary
constants c1, c2, ..., cn, not available in the current signature, fail to match any
term and this property is used to stop the search machinery automatically ap-
plied to free variables when they are at the top in goal formulas. The search
machinery is applied to a free variable together with its marking ci and fails
because ci fails to match any term.

Definition 6. Let φ be a one to one substitution (mapping) from a set of free
logic variables to a set of new arbitrary constants (not in the signature). A term t
is the encoding of a term s if and only if t = s φ. We may call t an encoding term
and s an encoded term. We may also call the new arbitrary constants encoding
constants.

Example 7. Given the function symbols f and g, the new arbitrary constants
c1, c2 and the free logic variables x and y, f(c1,g(c1,c2)) is the encoding of
f(x,g(x,y)) where φ = {x → c1, y → c2}

In the following, we use c to denote any encoding constant.

Definition 7. We denote an ordered list by [s1, ..., sn]. The symbol [] is used to
denote an empty list. We give the following operations on lists.

– s1 :: [s2, ..., sn] = [s1, ..., sn]
– [s1, ..., sn] ∂ [t1, ..., tn] = [s1, ..., sn, t1, ..., tn]
– L1 ∂ (t :: L2) = (L1 ∂ L2) ∪ {t} for any ordered lists L1, L2 possibly empty.



Unification As A Simple Theorem Prover 5

Definition 8. Let L denote any ordered list and a,f respectively denote 0-ary
and n-ary functions. s1, t1 ⇔ s2, t2 is symmetric, in other words, s1, t1 ⇔ s2, t2
implies s2, t2 ⇔ s1, t1. Unification can be defined by the following rules.

1. if L ∪ {a, a ⇔ a, a} L
2. if L ∪ {f(x1, .., xn), f(x

′
1, .., x

′
n) ⇔ f(y1, .., yn), f(y

′
1, .., y

′
n)}

L ∂ [x1, x
′
1 ⇔ y1, y

′
1, ..., xn, x

′
n ⇔ yn, y

′
n]

3. if L ∪ {x, c ⇔ y, y′} equal(x, y) and L {c → y′}

Example 8. The rules of Definition 8 are applied to (7) where
φ = {x → c1, y → c2, z → c3}

[g(g(x, x), f(a)), g(g(c1, c1), f(a)) ⇔ g(g(y, z), f(z)), g(g(c2, c3), f(c3))] (7)

– [g(g(x, x), f(a)), g(g(c1, c1), f(a)) ⇔ g(g(y, z), f(z)), g(g(c2, c3), f(c3))]
– [(g(x, x), g(c1, c1) ⇔ g(y, z), g(c2, c3)), (f(a), f(a) ⇔ f(z), f(c3))]
– [(x, c1 ⇔ y, c2), (x, c1 ⇔ z, c3), (f(a), f(a) ⇔ f(z), f(c3))]
– equal(x, y) and [(x, c1 ⇔ z, c3), (f(a), f(a) ⇔ f(z), f(c3))] {c1 → c2}
– [(y, c2 ⇔ z, c3), (f(a), f(a) ⇔ f(z), f(c3))] (x is substituted by y)
– equal(y, z) and [f(a), f(a) ⇔ f(z), f(c3)]{c3 → c2}
– [f(a), f(a) ⇔ f(y), f(c2)] (z is substituted by y)
– [a, a ⇔ y, c2]
– equal(a, y) and []{c2 → a}
– [] (y is substituted by a)

Example 9. The following is a prolog program that is used for the unification
given Definition 8.

1. m_a_r(X,[X|L],L).
2. m_a_r(X,[Y|K],[Y|L]) :- m_a_r(X,K,L).
3. append([],K,K).
4. append([X|XS],YS,[X|ZS]) :- append(XS,YS,ZS).
5. cp(I,O,I,O,_).
6. cp(X,X,_,_,U) :- m_a_r(X,U,_).
7. cp(a,a,_,_,_).
8. cp(f(X1),f(Y1),I,O,U) :- cp(X1,Y1,I,O,U).
9. cp(h(X1),h(Y1),I,O,U) :- cp(X1,Y1,I,O,U).

10. cp(g(X1,X2),g(Y1,Y2),I,O,U) :- cp(X1,Y1,I,O,U),cp(X2,Y2,I,O,U).
11. subst([],[],_,_,_).
12. subst([eqq(X1,X2,X3,X4)|L1], [eqq(X1,Y2,X3,Y4)|L2],I,O,U) :-

cp(X2,Y2,I,O,U), cp(X4,Y4,I,O,U), subst(L1,L2,I,O,U).
13. equal(X,X).
14. unf([],_).
15. unf(L,U) :- m_a_r(eqq(a,a,a,a),L,L1),unf(L1,U).
16. unf(L,U) :- m_a_r(eqq(f(X1),f(X2),f(X3),f(X4)),L,L1),

unf([eqq(X1,X2,X3,X4)|L1],U).
17. unf(L,U) :- m_a_r(eqq(h(X1),h(X2),h(X3),h(X4)),L,L1),

unf([eqq(X1,X2,X3,X4)|L1],U).



6 M.S. Aygün

18. unf(L,U) :-
m_a_r(eqq(g(X11,X12),g(X21,X22),g(X31,X32),g(X41,X42)),L,L1),
append([eqq(X11,X21,X31,X41),eqq(X12,X22,X32,X42)],L1,L2),unf(L2,U).

19. unf(L,U) :-
(m_a_r(eqq(X,X1,Y,Y1),L,L1);m_a_r(eqq(Y,Y1,X,X1),L,L1)),
equal(X,Y),m_a_r(X1,U,U1),subst(L1,L2,X1,Y1,U1),unf(L2,U).

When the goal
unf([eqq(g(g(X,X), f(a)), g(g(c1, c1), f(a)),

g(g(Y,Z), f(Z)), g(g(c2, c3), f(c3)))], [c1, c2, c3])
is submitted to prolog, it returns the following answer

X = Y, Y = Z, Z = a

3 Conclusion

Unification is considered as term rewriting in [1, 2] where variables are bound
by a domain and repeated application of rewrite rules until a trivial solution is
reached. On the other hand, this paper considers unification as a theorem to be
proved where variables are free. Variables are subject to search and this leads
to inefficiency. This problem is solved in this paper. The benefit of the approach
we use gives us naturalness and clearness. Theorem provers use unification as
auxiliary machinery when goal needs to be unified with the left-hand side of a
rule. Unification, the most important part of a theorem prover should not be
used as an external tool. Instead, it should be defined inside a theorem prover.
In our strategy, we start with a simple theorem prover whose rules are so simple
that it acts like a term writing system. Goal is matched (not unified) with the
left-hand side of rules and this satisfies our needs. When free variables are at
the top in goal formulas, by default, automatic search machinery is applied. The
variables of the terms to be unified can take whatever values to take as long as
this substitution makes them equal. So, by definition, infinitely many solutions
may exist and each may make the goal provable. By using marking technique,
we restrict the search space. We are only interested in most general one.

Acknowledgments. The author thanks to referees for helpful comments on previous
drafts.

References

1. Chang, C., Char, R.-Lee, T.: Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, San Francisco, London (1973)

2. Jouannaud, J.P., Kirchner, C.: Solving Equations in Abstract Algebras: a Rule-
Based Survey of Unification. Computational Logic. Essay in honor of Alan Robinson.
The MIT Press, pages 257-321, Cambridge, 1991

3. Easy Chair Publications, https://easychair.org/publications/preprint/l7Vp
4. Easy Chair Publications, https://easychair.org/publications/preprint/JCqv


