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—— Abstract

A sparse language is a formal language such that the number of strings of length n is bounded by a

polynomial function of n. We create a class with the opposite definition, that is a class of languages
that are dense instead of sparse. We define a dense language on m as a formal language (a set of
binary strings) where there exists a positive integer ng such that the counting of the number of
strings of length n > no in the language is greater than or equal to 2"~"" where m is a real number
and 0 < m < 1. We call the complexity class of all dense languages on m as DENSE(m). We prove
that there exists an NP—complete problem that belongs to DENSE(m) for every possible value of
0<m< 1.
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1  Summary

In computational complexity theory, a sparse language is a formal language (a set of strings)
such that the complexity function, counting the number of strings of length n in the language,
is bounded by a polynomial function of n. The complexity class of all sparse languages is
called SPARSE. SPARSE contains TALLY | the class of unary languages, since these
have at most one string of any one length.

Fortune showed in 1979 that if any sparse language is coNP—complete, then P = N P (this
is Fortune’s theorem) [5]. Mahaney used this to show in 1982 that if any sparse language
is NP—complete, then P = NP [6]. A simpler proof of this based on left-sets was given by
Ogihara and Watanabe in 1991 [7]. Mahaney’s argument does not actually require the sparse
language to be in NP, so there is a sparse NP-hard set if and only if P = NP [6].

We create a class with the opposite definition, that is a class of languages that are dense
instead of sparse. We show there is a sequence of languages that are in NP-complete, but
their density grows as much as we go forward into the iteration of the sequence. The first
element of the sequence is a variation of the NP-complete problem known as HAM-CYCLE
[8]. The next element in the sequence is constructed from this new version of HAM-CYCLE.
Indeed, each language is created from its previous one in the sequence. Since the density
grows according we move forward into the sequence, then there exists a language so much
dense such that its density tends to 0 when the bit-length n of the binary strings tends to
infinity. However, this incredible dense language is still NP—complete.

2 Basic Definitions

Let X be a finite alphabet with at least two elements, and let ¥* be the set of finite strings
over ¥ [1]. A Turing machine M has an associated input alphabet X [1]. For each string w
in X* there is a computation associated with M on input w [1]. We say that M accepts w if
this computation terminates in the accepting state, that is M (w) = “yes” [1]. Note that M

fails to accept w either if this computation ends in the rejecting state, that is M (w) = “no”,
or if the computation fails to terminate [1].


mailto:vega.frank@gmail.com
https://uh-cu.academia.edu/FrankVega 
https://orcid.org/0000-0001-8210-4126

Dense Complete Set For NP

The language accepted by a Turing machine M, denoted L(M ), has an associated alphabet
Y. and is defined by

L(M)={weX": Mw) = “yes"}.

We denote by ¢ (w) the number of steps in the computation of M on input w [1]. For n € N
we denote by Ths(n) the worst case run time of M; that is

Ty (n) = maz{ty(w) : w e X"}

where X" is the set of all strings over X of length n [1]. We say that M runs in polynomial
time if there is a constant k such that for all n, Tps(n) < n* + k [1]. In other words, this
means the language L(M) can be accepted by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be accepted in polynomial time
by deterministic Turing machines [4]. A verifier for a language L is a deterministic Turing
machine M, where

L={w: M(w,c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [1]. A verifier uses additional information,
represented by the symbol ¢, to verify that a string w is a member of L. This information
is called certificate. NP is also the complexity class of languages defined by polynomial
time verifiers [8]. If NP is the class of problems that have succinct certificates, then the
complexity class coN P must contain those problems that have succinet disqualifications [8].
That is, a “no” instance of a problem in coN P possesses a short proof of its being a “no”
instance [8].

A function f:¥* — X* is a polynomial time computable function if some deterministic
Turing machine M, on every input w, halts in polynomial time with just f(w) on its tape
[9]. Let {0,1}* be the infinite set of binary strings, we say that a language Ly C {0,1}*
is polynomial time reducible to a language Ly C {0,1}*, written L1 <, Lo, if there is a
polynomial time computable function f : {0,1}* — {0,1}* such that for all « € {0,1}*,

x € Ly if and only if f(x) € Lo.
An important complexity class is NP-complete [4]. A language L C {0,1}* is NP-complete if

L e NP, and
L' <, L for every L' € NP.

If L is a language such that L’ <, L for some L' € NP-complete, then L is NP-hard
[4]. Moreover, if L € NP, then L € NP-complete [4]. A principal NP-complete problem is
HAM-CYCLE [4].

A simple graph is an undirected graph without multiple edges or loops [4]. An instance of
the language HAM-CYCLE is a simple graph G = (V, E) where V is the set of vertices and
E is the set of edges, each edge being an unordered pair of vertices [4]. We say (u,v) € E
is an edge in a simple graph G = (V, E) where u and v are vertices. For a simple graph
G = (V, E), a simple cycle in G is a sequence of distinct vertices (vg, v1, ve, ..., vk) such that
(vg,v0) € E and (v;—1,v;) € E for i = 1,2, ...,k [4]. A Hamiltonian cycle is a simple cycle of
the simple graph which contains all the vertices of the graph. A simple graph that contains a
hamiltonian cycle is said to be hamiltonian; otherwise, it is nonhamiltonian [4]. The problem
HAM-CYCLE asks whether a simple graph is hamiltonian [4].
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3 Results

» Definition 1. A dense language on m is a formal language (a set of binary strings) where
there exists a positive integer ng such that the counting of the number of strings of length
n > ng in the language is greater than or equal to 2™~ ™ where m is a real number and
0 <m < 1. The complexity class of all dense languages on m is called DENSE(m).

» Definition 2. A formal language (a set of binary strings) is in DENSE(0) if for every
possible value of 0 < m < 1, then the language is always in DENSE(m).

In this work, we are going to represent the simple graphs with an adjacency-matrix [4].
For the adjacency-matrix representation of a simple graph G = (V, E), we assume that
the vertices are numbered 1,2,...,|V] in some arbitrary manner. The adjacency-matrix
representation of a simple graph G consists of a |V| x [V| matrix A = (a; ;) such that a; ; =1
when (¢, j) € E and a; ; = 0 otherwise [4]. In this way, every simple graph of k vertices could
be represented by a binary string of k2 bits.

Observe the symmetry along the main diagonal of the adjacency matrix in this kind of
graph that is called simple. We define the transpose of a matrix A = (a; ;) to be the matrix
AT = (al;) given by af; = a;;. Hence the adjacency matrix A of a simple graph is its own
transpose A = AT

» Definition 3. The language NON-SIMPLE contains all the graph that are represented by
an adjacency-matriz A such that A # AT or there is some a; ; = 1 where i = j.

» Lemma 4. NON-SIMPLE ¢ P.

Proof. Given a binary string x, we can check whether z is an adjacency-matrix which is
not equal to its own transpose in time O(|z|?) just iterating each bit a; ; in x and checking
whether a; ; # a;; or a;; = 1 when i = j where |...| represents the bit-length function
[4]. <

» Definition 5. The language HAM-CYCLE’ contains all the binary strings z such that
z = xy, the bit-length of x is equal to (|\/|z]])? and x € HAM-CYCLE orx € NON-SIMPLE
where y could be the empty string when |...| and |...| represent the bit-length function and
the floor function respectively.

» Lemma 6. HAM-CYCLE’ € NP-complete.

Proof. Given a binary string 2 such that z = 2y and the bit-length of  is equal to (| /]z[])?,
we can decide in polynomial time whether x ¢ NON-SIMPLE just verifying when z = 7
and a; ; = 0 for all vertex ¢. In this way, we can reduce in polynomial time a simple graph
G = (V,E) of k vertices encoded as the binary string = such that when z has k? bits and
x ¢ NON-SIMPLE then

x € HAM-CYCLE if and only if vy € HAM-CYCLE’

where y could be the empty string. In this way, we can reduce in polynomial time each
element of HAM—-CYCLE to some element of HAM-CYCLE’. Therefore, HAM-CYCLE’ is
in NP-hard. Moreover, we can check in polynomial time over a binary string z such that
z = 2y and the bit-length of z is equal to (|+/]z||)?> whether + € HAM-CYCLE or z €
NON-SIMPLE since HAM-CYCLE € NP and NON-SIMPLE € NP because of P C NP
[8]. Consequently, HAM-CYCLE’ is in NP. Hence, HAM-CYCLE’ € NP-complete. <
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» Lemma 7. HAM-CYCLE’ € DENSE(1). This would mean the existence of a sufficiently
large positive integer n{, such that all the binary strings of length n > n{ which belong to
HAM-CYCLE’ are more than or equal to 2" 1 elements.

Proof. OEIS A000088 gives some number of graphs on n unlabeled points [10]. For 8 points
there are 12346 so just over half the graphs on 8 points are Hamiltonian [10]. For 12 points,
there are 152522187830 Hamiltonian graphs out of 165091172592 which would claim that
over 92% of the 12 point graphs are Hamiltonian [10]. For n = 2 there are two graphs,
neither of which is Hamiltonian [10]. For n < 8 over half the graphs are not Hamiltonian
[10]. Tt does not seem surprising that once n gets large most graphs are Hamiltonian [10].
Choosing a graph on n vertices at random is the same as including each edge in the
graph with probability 3, independently of the other edges [2]. You get a more general
model of random graphs if you choose each edge with probability p [2]. This model is known
as Gy p [2]. It turns out that for any constant p > 0, the probability that G, , contains a

Hamiltonian cycle tends to 1 when n tends to infinity [2]. In fact, this is true whenever
logn
p> AR

For all the binary strings z such that z = zy and the bit-length of z is equal to (|1/]z]])?,
the amount of elements of size |z| in HAM-CYCLE’ is equal to the number of binary strings
x € HAM-CYCLE or € NON-SIMPLE of size (| \/[]])? multiplied by 2/*I=(LV121D*  Since
the number of Hamiltonian graphs increases as much as we go further on n, it does not
seem surprising either that once n gets large most binary strings belong to HAM-CYCLE".
Moreover, the amount of binary strings which have some bit-length k? and belongs to
NON-SIMPLE is considerably superior to the amount of strings with the same bit-length
which are valid simple graphs. Actually, we can affirm for a sufficiently large positive integer
ng, all the binary strings of length n > n{, which belong to HAM-CYCLE’ are indeed more
than or equal to 2"~ ! elements. In this way, we show that HAM-CYCLE’ € DENSE(1). <=

for some constant c. In particular this is true for p = %, which is our case [2].

» Definition 8. We will define a sequence of languages HAM-CYCLE’}, for every possible
integer 1 < k. We state HAM-CYCLE", as the language HAM-CYCLE’. Recursively,
from a language HAM-CYCLE’, we define HAM-CYCLE’ 11 as follows: A binary string
xy complies with xy € HAM-CYCLE’x41 if and only if x and y are binary strings, x €
HAM-CYCLE’, ory € HAM-CYCLE", such that |x| = L%J where | ...| represents the
bit-length function and |...] is the floor function.

» Lemma 9. For every integer 1 < k, HAM-CYCLE’, € NP.

Proof. This is true for k = 1 as we see in Lemma 6. Every string xy which belongs to
HAM-CYCLE’; complies with x € HAM-CYCLE", or y € HAM-CYCLE" such that |z| =
L%J Moreover, every string xy which belongs to the language HAM-CYCLE’s complies
with # € HAM-CYCLE’; or y € HAM-CYCLE’; such that |z| = L%J Furthermore,
we can extend this property for every positive integer k£ > 3 in HAM-CYCLE’;. Indeed,
HAM-CYCLE’y is in NP for every integer 1 < k, since the verification of whether the two
substrings are indeed elements of HAM—-CYCLE’,_, can be done in polynomial time with
the appropriated certificates using the induction on k. |

» Theorem 10. For every integer 1 < k, HAM-CYCLE", € NP-complete.

Proof. This is true for £k = 1 by the Lemma 6. Let’s assume it is valid for some positive
integer 1 < k’. Let’s prove this for k' + 1. We already know the adjacency-matrix of n?
zeros represents a simple graph of n vertices which does not contain any edge. This kind
of a simple graph does not belong to HAM-CYCLE’;. As a consequence, this string will
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not belong to any HAM-CYCLE’;, because its substrings of a quadratic length are also
adjacency-matrix of only zeros. Suppose, we have an instance y of HAM-CYCLE"%,. We
can reduce y in HAM-CYCLE’ to zy in HAM-CYCLE’}/ 1 such that

y € HAM-CYCLE"}, if and only if zy € HAM-CYCLE’}y 41

where the binary string z is exactly a sequence of LIZ—Qy‘J zeros. We can do this since we
already know z ¢ HAM-CYCLE", . Certainly, if the membership zy € HAM-CYCLE /14 is
true, z ¢ HAM-CYCLE", and |z| = le—Qy‘J, then y € HAM-CYCLE’; also holds according
to the Definition 8. Since this reduction remains in polynomial time for every positive integer
1 < k', then we show that HAM-CYCLE’ 41 is in NP-hard. Moreover, HAM-CYCLE"/ 41
is also in NP-complete, because of the Lemma 9. |

» Theorem 11. For every integer 1 < k, if the language HAM-CYCLE?; is in DENSE(K')
for every instance of bit-length n’ > ng, then HAM—CYCLE ;11 s in DENSE(%,) for every
instance of bit-length n’ > 2 X nyg.

Proof. If the language HAM-CYCLE’; is in DENSE(K') for every instance of bit-length

n' > ng, then for every integer n > ng the amount of elements of size n+i in HAM-CYCLE 11

n+1
2

(where i > ng and ¢ = | 25 ]) is greater than or equal to

217K gn 4 on TR 5 (21 - 217,

This is because there must be more than or equal to 20—+ elements of size i in HAM-CYCLE’,
which are prefixes of the binary strings of size n + i in the language HAM-CYCLE, 1. We
multiply that amount by 2™ since this is the number of different combinations of suffixes
with length n in the binary strings of size n 4 i. Moreover, there must be more than or equal
to 2% elements of size n in HAM-CYCLE’), which are suffixes of the binary strings of
size n+ i in HAM-CYCLE’),,,. We multiply that amount by (2¢ — 2¢=*") since this is the
number of different combinations of prefixes with length 4 in the binary strings of size n + ¢
just avoiding to count the previous prefixes twice. If we join both properties, we obtain the
sum described by the formula above.
Indeed, this formula can be simplified to

2n+i7k' + 2’n+i7k), X (20 _ 27]6')
and extracting a common factor we obtain
2R (14 (1—27))

which is equal to

1

2’n+i—k X (2 _ W)

Nevertheless, for every real number 0 < k£ < 1 we have that

1 K
(2—ﬁ)222~

Certainly, if we multiply both member of the inequality by 2K we obtain

2K+ 1) > ok +
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Figure 1 Plot the function f(x) on the interval [-3, 3]

which is equivalent to
¥ x(2-2%)>1

that it is true for every real number 0 < k¥’ < 1. We can check in the Figure 1 that the
function f(z) = 2% x (2 —2%) is greater than or equal to 1 over the interval [0, 1]. Thus

2}«) > gnti=k' o ok

2n+i—k’ X (2 _

where

2n+i7k}/ % 2%/ — 2n+i7(k/7%/) — 2n+zf%/

Since there are more than or equal to on’~ (%) elements of the language HAM-CYCLE’ 14
with length n’ > 2 X ng therefore, we show that HAM-CYCLE’;41 is in DENSE(%') for
every instance of bit-length n’ > 2 x nyg. <

» Lemma 12. HAM-CYCLE), € DENSE(57=) for every instance of bit-length n >

2k=1 % nl, where the constant n{, is the positive integer used in the Definition 1 and Lemma
7 for HAM-CYCLE".

Proof. According to the Lemma 7, HAM-CYCLE" is in DENSE(1) for every instance
of bit-length n > 2% x nf, = n{,. Consequently, due to Theorem 11, HAM-CYCLE; is in
DENSE(%) for every instance of bit-length n > 2! x nj. Moreover, HAM-CYCLE’; is
in DENSE(3) for every instance of bit-length n > 22 x n{ and so forth ... and thus, for

every language HAM-CYCLE’;, we have that HAM-CYCLE’, € DENSE(5=) for every
instance of bit-length n > 281 x ng. >

» Definition 13. We will define a language HAM-CYCLE’, as follows: A binary string x
complies with x € HAM-CYCLE’, if and only if we obtain that v € HAM-CYCLE’; and
2F=1 x nl) < |x| < 2% x nl) where |...| represents the bit-length function and the constant n)
is the positive integer used in the Definition 1 and Lemma 7 for HAM-CYCLE’.

» Lemma 14. HAM-CYCLE’, € NP.

Proof. We can calculate the value of k from some binary string = that is approxim-
ately [logQ(%)], where [...] is the ceiling function. In this way, we should know if
0
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x € HAM-CYCLE’,,, then x € HAM-CYCLE’;. However, for every positive integer
k, we can check in polynomial time whether x € HAM-CYCLE’, just splitting the bin-
ary string x into the following substrings x = x1x2x3 ... z9r—1 and verifying later whether
x1 € HAM-CYCLE’; or zo € HAM-CYCLE’; or x3 € HAM-CYCLE’; and so forth ...
until we finally check whether z9:—1 € HAM-CYCLE’; where 2~ is polynomially bounded
by the bit-length string |z|. Indeed, the language HAM-CYCLE’y, is in NP, because
the verification of whether the whole string or a polynomially amount of substrings are
indeed elements of HAM—-CYCLE’; can be done in polynomial time with the appropriated
certificates. |

» Theorem 15. HAM-CYCLE’,, € NP-complete.

Proof. We already know the adjacency-matrix of n? zeros represents a simple graph of n
vertices which does not contain any edge. This kind of a simple graph does not belong to
HAM-CYCLE’,. Suppose, we have an instance y of HAM-CYCLE’. We can reduce y in
HAM-CYCLE", to zy in HAM-CYCLE’,, such that

y € HAM-CYCLE" if and only if zy € HAM-CYCLE’,

where z is a binary string of a sequence of zeros such that 2¥~1 x n{ < |2y| < 2% x n{, and the
membership in zy € HAM-CYCLE’; implies that y € HAM-CYCLE’;, where the constant
ng is the positive integer used in the Definition 1 and Lemma 7 for HAM-CYCLE’. We claim
that the bit-length of zy is polynomially bounded by |y|. Certainly, the bit-length of z is

2F=1 x nf and |y| since k ~ flog2(|z?f|
0

polynomially bounded by )], where [...] is the ceiling

ly|+2* " xng
’
0

that 14 ~ 1. In this way, we show that HAM-CYCLE’, is in NP-hard. Moreover, we

2k xnl ™

demonstrate that HAM-CYCLE '~ 1s also in NP—complete, because of the Lemma 14. <«

function. The previous expression would be equivalent to 2% which means

» Lemma 16. HAM-CYCLE’s, € DENSE(0).

Proof. When k tends to infinity, then 2,%1 tends to 0. In this way, we obtain that
HAM-CYCLE’, € DENSE(0) as a consequence of the Lemma 12. Actually, HAM-CYCLE
contains the elements of the languages HAM-CYCLE’y into the interval of the binary strings
between the bit-length 2~ x nf) < n < 2% xnj. Those elements will have a bit-length greater
than 257! x nf, and by the Lemma 12 the density in the interval would be DENSE(z ).
Therefore, the proof is done. |

4 Discussion

When a language is sparse, then its complement is in DENSFE(0) [6]. Indeed, the sparse
languages are called sparse because there are a total of 2™ strings of length n, and if a
language only contains polynomially many of these, then the proportion of strings of length
n that it contains rapidly goes to zero as n grows (which means its complement should be in
DENSE(0)) [6]. In addition, according to Theorem 15, the complement of this language
HAM-CYCLE’s, must be in coNP-complete, because of the complements of the NP-complete
problems are complete for coN P [8]. In 1999, Jin-Yi Cai and D. Sivakumar, building on work
by Ogihara, showed that if there exists a sparse P-complete problem, then LOGSPACE = P
[3]. We might extend the proof of this paper to show the same result on P. Certainly,
we might only need to find some P-complete which belongs to DENSE(1) because the
P-completeness is closed under complement [8]. Indeed, the other steps of that possible proof
might be similar to the arguments that we follow in this paper.
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